
An RbTree Family Drama
Exploiting a Linux Kernel 0-day Through Red-Black Tree

Transformations

Savino Dicanosa, William Liu

2

AGENDA

3

 ❯ NET/SCHED OVERVIEW

AGENDA

4

 ❯ NET/SCHED OVERVIEW

 ❯ CVE-2025-38001 ANALYSIS

AGENDA

5

 ❯ NET/SCHED OVERVIEW

 ❯ CVE-2025-38001 ANALYSIS

 ❯ RBTREE ATTACK AGAINST LTS/COS

AGENDA

6

 ❯ NET/SCHED OVERVIEW

 ❯ CVE-2025-38001 ANALYSIS

 ❯ RBTREE ATTACK AGAINST LTS/COS

 ❯ MITIGATIONS EXPLOIT

AGENDA

7

WHY CARE?

8

WHY CARE?

9

WHY CARE?

10

WHY CARE?

3.59 seconds 11

WHY CARE?

LINUX NETWORK SCHEDULER

12

WHAT IS A QDISC?

13

14

NETWORK SCHEDULER: QDISC

15

NETWORK SCHEDULER: QDISC

16

NETWORK SCHEDULER: QDISC

17

NETWORK SCHEDULER: QDISC

18

NETWORK SCHEDULER: QDISC

19

NETWORK SCHEDULER: QDISC

20

NETWORK SCHEDULER: QDISC

21

NETWORK SCHEDULER: QDISC

"HISTORICAL" VULNERABILITIES

22

23

NETWORK SCHEDULER: VULNERABILITIES

24

NETWORK SCHEDULER: VULNERABILITIES

25

NETWORK SCHEDULER: VULNERABILITIES

26

NETWORK SCHEDULER: VULNERABILITIES

27

NETWORK SCHEDULER: VULNERABILITIES

28

NETWORK SCHEDULER: VULNERABILITIES

29

NETWORK SCHEDULER: VULNERABILITIES

30

NETWORK SCHEDULER: VULNERABILITIES

☠ CVE-2025-38001 ☠

31

32

CVE-2025-38001: INFINITE LOOP

33

CVE-2025-38001: INFINITE LOOP

34

CVE-2025-38001: INFINITE LOOP

35

INITIAL INFINITE LOOP REPRO

CVE-2025-38001: INFINITE LOOP

36

ROOT CAUSE?

37

CVE-2025-38001: ROOT CAUSE

38

CVE-2025-38001: ROOT CAUSE

39

CVE-2025-38001: ROOT CAUSE

40

CVE-2025-38001: ROOT CAUSE

41

CVE-2025-38001: ROOT CAUSE

42

CVE-2025-38001: ROOT CAUSE

43

CVE-2025-38001: ROOT CAUSE

44

CVE-2025-38001: ROOT CAUSE

45

CVE-2025-38001: ROOT CAUSE

46

CVE-2025-38001: ROOT CAUSE

47

CVE-2025-38001: ROOT CAUSE

48

CVE-2025-38001: ROOT CAUSE

49

CVE-2025-38001: ROOT CAUSE

50

CVE-2025-38001: ROOT CAUSE

51

CVE-2025-38001: ROOT CAUSE

52

CVE-2025-38001: ROOT CAUSE

53

CVE-2025-38001: ROOT CAUSE

54

CVE-2025-38001: ROOT CAUSE

55

CVE-2025-38001: ROOT CAUSE

56

CVE-2025-38001: ROOT CAUSE

57

CVE-2025-38001: ROOT CAUSE

58

CVE-2025-38001: ROOT CAUSE

59

CVE-2025-38001: ROOT CAUSE

60

CVE-2025-38001: ROOT CAUSE

61

CVE-2025-38001: ROOT CAUSE

62

CVE-2025-38001: ROOT CAUSE

63

CVE-2025-38001: ROOT CAUSE

64

CVE-2025-38001: ROOT CAUSE

OK
INFINITE LOOP

65

CAN WE UNLEASH
A MORE SEVERE

BUG

66

67

68

69

USE TBF TO BLOCK DEQUEUE
BYPASS INFINITE LOOP

TRIGGER UAF

70

MINIMIZE TOKENS
& BLOCK DEQUEUE

CVE-2025-38001: USE-AFTER-FREE

71

CVE-2025-38001: USE-AFTER-FREE

72

CVE-2025-38001: USE-AFTER-FREE

73

● ❯ SETUP TBF AS ROOT

● ❯ FORCE VERY LOW RATE

CVE-2025-38001: USE-AFTER-FREE

74

❯ SETUP HFSC + NETEM
❯ TRIGGER DOUBLE INSERTION

CVE-2025-38001: USE-AFTER-FREE

75

● ❯ FREE THE CLASS
❯ TRIGGER UAF BY CLASS INSERTION

CVE-2025-38001: USE-AFTER-FREE

76

CVE-2025-38001: USE-AFTER-FREE

EL_NODE

- SETUP TBF AS ROOT QDISC WITH A
VERY LOW RATE AND DISABLE
DEQUEUE BY SENDING PACKETS TO
THE INTERFACE

- SETUP HFSC + NETEM AND
TRIGGER THE DOUBLE CLASS
INSERTION (THE INFINITE LOOP IS
BYPASSED)

- TRIGGER THE UAF BY FREEING THE
VULNERABLE CLASS AND INSERTING
A NEW ONE

77

CVE-2025-38001: USE-AFTER-FREE

- SETUP TBF AS ROOT QDISC WITH A
VERY LOW RATE AND DISABLE
DEQUEUE BY SENDING PACKETS TO
THE INTERFACE

- SETUP HFSC + NETEM AND
TRIGGER THE DOUBLE CLASS
INSERTION (THE INFINITE LOOP IS
BYPASSED)

- TRIGGER THE UAF BY FREEING THE
VULNERABLE CLASS AND INSERTING
A NEW ONE

78

CVE-2025-38001: USE-AFTER-FREE

RBTREE ATTACK

79

RBTREE ATTACK

80

❯ DATA-ONLY ATTACK BASED ON RBTREE
 TRANSFORMATIONS (PTR COPY 🡢 PAGE-UAF)

RBTREE ATTACK

81

❯ DATA-ONLY ATTACK BASED ON RBTREE
 TRANSFORMATIONS (PTR COPY 🡢 PAGE-UAF)

❯ PORTABLE WORKS ON MULTIPLE TARGETS

RBTREE ATTACK

82

BONUS!

❯ DATA-ONLY ATTACK BASED ON RBTREE
 TRANSFORMATIONS (PTR COPY 🡢 PAGE-UAF)

❯ PORTABLE WORKS ON MULTIPLE TARGETS

❯ RELIABLE VERY HIGH SUCCESS RATE (>99%)

83

WHY RED-BLACK TREES?

84

WHY RED-BLACK TREES?

85

WHY RED-BLACK TREES?

86

WHAT IS A RED-BLACK-TREE?

87

❯ SELF-BALANCING BINARY SEARCH TREE

WHAT IS A RED-BLACK-TREE?

88

❯ SELF-BALANCING BINARY SEARCH TREE

❯ FOLLOWS COLOR RULES TO STAY BALANCED

WHAT IS A RED-BLACK-TREE?

89

❯ SELF-BALANCING BINARY SEARCH TREE

❯ FOLLOWS COLOR RULES TO STAY BALANCED

❯ REBALANCES TO SATISFY RULES WHEN MODIFIED

C

WHAT IS A RED-BLACK-TREE?

RB_NODE METADATA UPDATE GIVES
POINTER COPY PRIMITIVES

90

POINTER COPY INTUITION

ATTACK COMPONENTS: RB NODES & PAGE VECTORS

91

RED-BLACK TREE NODES PAGE VECTORS

ATTACK COMPONENTS: RB NODES

92

RED-BLACK TREE NODES

ATTACK COMPONENTS: RB NODES

93

__RB_PARENT_COLOR (OFF=0)

- PARENT NODE ADDRESS

- NODE COLOR (1 BIT)

1 = RB_BLACK

0 = RB_RED

RED-BLACK TREE NODES

ATTACK COMPONENTS: RB NODES

94

__RB_PARENT_COLOR (OFF=0)

- PARENT NODE ADDRESS

- NODE COLOR (1 BIT)

1 = RB_BLACK

0 = RB_RED

RB_RIGHT (OFF=8)

RB_LEFT (OFF=16)
RED-BLACK TREE NODES

ATTACK COMPONENTS: PAGE VECTORS

ALLOCATE PAGE VECTOR
95

ATTACK COMPONENTS: PAGE VECTORS

ALLOCATE PAGE VECTOR
96

ATTACK COMPONENTS: PAGE VECTORS

97

ALLOCATE PAGE VECTOR

ATTACK COMPONENTS: PAGE VECTORS

98

ALLOCATE PAGE VECTOR

ATTACK COMPONENTS: PAGE VECTORS

99

FREE PAGE VECTOR

ATTACK COMPONENTS: PAGE VECTORS

100

FREE PAGE VECTOR

ATTACK COMPONENTS: PAGE VECTORS

101

MMAP PAGE VECTOR

ATTACK COMPONENTS: PAGE VECTORS

102

MMAP PAGE VECTOR

❯ WE CONTROL # OF PAGES

❯ WE CONTROL PAGE ORDER

❯ PAGES CAN MAP TO USERSPACE

ATTACK COMPONENTS: PAGE VECTORS

103

ATTACK COMPONENTS: PAGE VECTORS

104

PAGE
PAGE
PAGE

105

ATTEMPT #1

❯ FREE HFSC CLASS AND REPLACE IT WITH PGV

RB_NODE REMAP VIA PACKET_MMAP

106

PAGE
PAGE
PAGE

RB_NODE REMAP VIA PACKET_MMAP

❯ FREE HFSC CLASS AND REPLACE IT WITH PGV

❯ OVERWRITE PAGE PTR WITH RB_NODE PTR

107

RB_NODE REMAP VIA PACKET_MMAP

❯ FREE HFSC CLASS AND REPLACE IT WITH PGV

❯ OVERWRITE PAGE PTR WITH RB_NODE PTR

❯ REMAP RB_NODE WITH PACKET_MMAP

108

RB_NODE REMAP VIA PACKET_MMAP

109

RB_NODE REMAP VIA PACKET_MMAP

110

RB_NODE REMAP VIA PACKET_MMAP

111

RB_NODE REMAP VIA PACKET_MMAP

112

RB_NODE REMAP VIA PACKET_MMAP

113

FAILED

114

RB_NODE REMAP VIA PACKET_MMAP

FAILED

115

RB_NODE REMAP VIA PACKET_MMAP

116

ATTEMPT #2

117

ATTEMPT #2

SPOILER IT WORKED

ATTEMPT #2

❯ FREE HFSC CLASS AND REPLACE WITH PGV

118

PAGE
PAGE
PAGE

ATTEMPT #2

❯ FREE HFSC CLASS AND REPLACE WITH PGV

❯ INSERT NEW CLASS TO LEAK RB_NODE

119

ATTEMPT #2

❯ FREE HFSC CLASS AND REPLACE WITH PGV

❯ INSERT NEW CLASS TO LEAK RB_NODE

❯ FORGE & INFILTRATE MALICIOUS NODE INTO TREE

120

ATTEMPT #2

❯ FREE HFSC CLASS AND REPLACE WITH PGV

❯ INSERT NEW CLASS TO LEAK RB_NODE

❯ FORGE & INFILTRATE MALICIOUS NODE INTO TREE

❯ COPY PAGE PTR FROM PGV TO ANOTHER

121

122

PTR COPY PRIMITIVE OVERVIEW: THE EXPLOIT

IT LOOKS EASY

PTR COPY PRIMITIVE OVERVIEW: THE EXPLOIT

123

124

PTR COPY PRIMITIVE OVERVIEW: THE EXPLOIT

125

PTR COPY PRIMITIVE OVERVIEW: THE EXPLOIT

BUT

126

PTR COPY PRIMITIVE OVERVIEW: THE EXPLOIT

IT’S COMPLICATED…

127

PTR COPY PRIMITIVE OVERVIEW: THE EXPLOIT

PREPARING THE ATTACK

128

USE TBF TO BLOCK DEQUEUE

129

SATURATE PARTIALS, SETUP VULN
CLASS

PREPARING THE ATTACK

130

NUM_PGV_BEFORE = 16
NUM_PGV_AFTER = 32

CLASS :2 ALLOCATION + PGV SPRAY

PREPARING THE ATTACK

131

PREPARING THE ATTACK

132

PREPARING THE ATTACK

133

PAGE
PAGE
PAGE

PAGE

PAGE PAGE

HFSC_CLASS EL_NODEPREPARING THE ATTACK

134

PAGE
PAGE
PAGE

PAGE

PAGE PAGE

HFSC_CLASS EL_NODEPREPARING THE ATTACK

HFSC_CLASS (C1) REPLACED BY PGV
135

PREPARING THE ATTACK

136

RBTREE INSERT

137

RBTREE INSERT

138

RBTREE INSERT

139

RBTREE INSERT

140

RBTREE INSERT

141

RBTREE INSERT

142

RBTREE INSERT

143

RBTREE INSERT

144

RBTREE INSERT

145

RBTREE INSERT

RED-BLACK TREE AFTER
CLASS 2:2 INSERTION

RED-BLACK TREE FROM
PAGE P’s PERSPECTIVE

146

RBTREE INSERT

👶

👩

RED-BLACK TREE AFTER
CLASS 2:2 INSERTION

RED-BLACK TREE FROM
PAGE P’s PERSPECTIVE

147

RBTREE INSERT

👩

👶

148

RBTREE INSERT

149

RBTREE INSERT

150

RBTREE INSERT

CLASS :2 EL_NODE
PTR LEAKED TO

USERSPACE

151

RBTREE INSERT

EVIL GRANDPA INFILTRATES THE TREE

152

153

EVIL GRANDPA INFILTRATES THE TREE

154

EVIL GRANDPA INFILTRATES THE TREE

155

EVIL GRANDPA INFILTRATES THE TREE

👩

👶

156

EVIL GRANDPA INFILTRATES THE TREE

👩

👶

RBTREE UPDATE

157

158

RBTREE UPDATE

159

RBTREE UPDATE

160

RBTREE UPDATE - REMOVE

161

RBTREE UPDATE - REMOVE

162

RBTREE UPDATE - REMOVE

163

RBTREE UPDATE - REMOVE

164

RBTREE UPDATE - REMOVE

RBTREE UPDATE - RE-INSERT

165

166

RBTREE UPDATE - RE-INSERT

167

RBTREE UPDATE - RE-INSERT

168

RBTREE UPDATE - RE-INSERT

169

RBTREE UPDATE - RE-INSERT

170

RBTREE UPDATE - RE-INSERT

RED-BLACK TREE AFTER
CLASS 2:2 INSERTION

RED-BLACK TREE FROM
PAGE P’s PERSPECTIVE

171

RBTREE UPDATE - RE-INSERT

👶

👩

RED-BLACK TREE AFTER
CLASS 2:2 INSERTION

RED-BLACK TREE FROM
PAGE P’s PERSPECTIVE

172

RBTREE UPDATE - RE-INSERT

👩

👶

173

RBTREE UPDATE - RE-INSERT

174

RBTREE UPDATE - RE-INSERT

175

RBTREE UPDATE - RE-INSERT

176

RBTREE UPDATE - RE-INSERT

👶 ?!?!

177

RBTREE UPDATE - RE-INSERT

RBTREE REMOVE

178

179

RBTREE REMOVE

180

RBTREE REMOVE

181

RBTREE REMOVE

182

RBTREE REMOVE

183

RBTREE REMOVE

184

RBTREE REMOVE

185

RBTREE REMOVE

WELL, NOT YET…

PAGE DUPLICATION TO PAGE-UAF

186

THE PAGE REFCOUNT IS 3

❯ ORIGINAL PGV

❯ MMAPPED TO USERSPACE

❯ MMAPPED AGAIN

187

PAGE DUPLICATION TO PAGE-UAF

188

THE # OF REFERENCES IS 4

❯ ORIGINAL PGV

❯ MMAPPED TO USERSPACE

❯ MMAPPED AGAIN

❯ TARGET PGV

PAGE DUPLICATION TO PAGE-UAF

189

PAGE DUPLICATION TO PAGE-UAF

190

PAGE DUPLICATION TO PAGE-UAF

191

PAGE DUPLICATION TO PAGE-UAF

192

PAGE DUPLICATION TO PAGE-UAF

193
pipe_write()

PAGE DUPLICATION TO PAGE-UAF

194
pipe_write()

PAGE DUPLICATION TO PAGE-UAF

195

PAGE DUPLICATION TO PAGE-UAF

PAGE-UAF
AND NOW?

196

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

197

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

198

SIGNALFD

ENABLES SIGNAL HANDLING
THROUGH A FILE DESCRIPTOR

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

199

SIGNALFD

ENABLES SIGNAL HANDLING
THROUGH A FILE DESCRIPTOR

200

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

201

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

202

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

203

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

204

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

205

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

206

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

0x0000000000040100

207

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

0x0000000000040100

208

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

LET’S WRITE BACKWARDS

0x0000000000040100

209

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

210

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

211

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

212

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

213

FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES

MULTIPLE TARGETS PWNED WITH THE SAME EXPLOIT

214

DEBIAN 12 KERNELCTF LTS

 UBUNTU 22.04
KERNELCTF COS

215

PWN OR DRINK

LIVE DEMO

216

BREAKING KCTF POW

217

BREAKING KCTF POW

218

BREAKING KCTF POW

219

BREAKING KCTF POW

220

221

222

MITIGATIONS OVERVIEW

223

KMALLOC_SPLIT_VARSIZE

224

KMALLOC_SPLIT_VARSIZE

225

KMALLOC_SPLIT_VARSIZE

226

KMALLOC_SPLIT_VARSIZE

227

OK JUST CROSS CACHE RIGHT?

228

RIGHT???

229

☠ SLAB_VIRTUAL ☠

230

SLAB_VIRTUAL

231

SLAB_VIRTUAL

232

SLAB_VIRTUAL

233

SLAB_VIRTUAL

234

SOOO WEAKER CROSS CACHE?

235

SLAB_VIRTUAL

236

237

SLAB_VIRTUAL

238

WE CANNOT USE PGV

239

RANDOM_KMALLOC_CACHES

240

241

RANDOM_KMALLOC_CACHES

242

RANDOM_KMALLOC_CACHES

243

RANDOM_KMALLOC_CACHES

244

RANDOM_KMALLOC_CACHES

245

RANDOM_KMALLOC_CACHES

REMEMBER
NO CROSS CACHE

246

247

RANDOM_KMALLOC_CACHES

248

RANDOM_KMALLOC_CACHES

249

RANDOM_KMALLOC_CACHES

HFSC_CHANGE_CLASS

HTB_CHANGE_CLASS

250

RANDOM_KMALLOC_CACHES

HFSC_CHANGE_CLASS

RANDOM KMALLOC SEED

RANDOM KMALLOC SEED

HTB_CHANGE_CLASS

251

RANDOM_KMALLOC_CACHES

HFSC_CHANGE_CLASS

_RET_IP_ IS THE SAME

RANDOM KMALLOC SEED

RANDOM KMALLOC SEED

HTB_CHANGE_CLASS

252

RANDOM_KMALLOC_CACHES

MITIGATIONS - QUICK RECAP

❯ KMALLOC_SPLIT_VARSIZE KILLS PGV

❯ SLAB_VIRTUAL KILLS CROSS CACHE

❯ RANDOM_KMALLOC_CACHES LIMITS TYPE CONFUSION

253

☠ PWNING MITIGATION ☠

254

255

INITIAL ATTEMPT

INITIAL ATTEMPT

256

INITIAL ATTEMPT

257

INITIAL ATTEMPT

258

INITIAL ATTEMPT

259

offsetof(struct hfsc_class, qdisc) = 0x98
offsetof(struct htb_class, bstats.packets) = 0x98

INITIAL ATTEMPT

260

offsetof(struct hfsc_class, qdisc) = 0x98
offsetof(struct htb_class, bstats.packets) = 0x98

REQUIRES 18 QUINTILLION PACKETS

INITIAL ATTEMPT

261

offsetof(struct hfsc_class, qdisc) = 0x98
offsetof(struct htb_class, bstats.packets) = 0x98

REQUIRES 18 QUINTILLION PACKETS TO FAKE A POINTER18,000,000,000,000,000,000+
PACKETS

INITIAL ATTEMPT

262

Quotes and Aphorisms of Plato

PLANNING THE ATTACK

263

264

ATTEMPT #2

PLANNING THE ATTACK

265

PLANNING THE ATTACK

266

PLANNING THE ATTACK

267

offsetof(struct hfsc_class, el_node.rb_left) = 0xB0
offsetof(struct htb_class, xstats.lends) = 0xB0

PLANNING THE ATTACK

268

PLANNING THE ATTACK

269

❯ OVERLAP HFSC_CLASS WITH HTB_CLASS

PLANNING THE ATTACK

270

❯ OVERLAP HFSC_CLASS WITH HTB_CLASS

❯ TRIGGER UPDATE TO WRITE RB_NODE INTO HTB_CLASS

PLANNING THE ATTACK

271

❯ OVERLAP HFSC_CLASS WITH HTB_CLASS

❯ TRIGGER UPDATE TO WRITE RB_NODE INTO HTB_CLASS

❯ DUMP CLASS’S XSTATS TO LEAK RB_LEFT PTR

PLANNING THE ATTACK

272

❯ OVERLAP HFSC_CLASS WITH HTB_CLASS

❯ TRIGGER UPDATE TO WRITE RB_NODE INTO HTB_CLASS

❯ DUMP CLASS’S XSTATS TO LEAK RB_LEFT PTR

❯ SEND PKTS TO CLASS TO INCREMENT RB_LEFT PTR

PREPARING THE ATTACK

273

INSERT FOUR NODES

PREPARING THE ATTACK

274

FREE CLASS 2:1

PREPARING THE ATTACK

275

FREE CLASS 2:1
REPLACE THE OBJECT WITH AN

HTB CLASS (1:2)

FIRST RBTREE TRANSFORMATION

276

DELETE CLASS 2:4

FIRST RBTREE TRANSFORMATION

277

DELETE CLASS 2:4
THE HTB CLASS BECOMES
NODE 2:3’S RIGHT CHILD

FIRST RBTREE TRANSFORMATION

278

UPDATE CLASS 2:2
REMOVE

FIRST RBTREE TRANSFORMATION

279

UPDATE CLASS 2:2
RE-INSERT

UPDATE CLASS 2:2
REMOVE

FIRST RBTREE TRANSFORMATION

280

UPDATE CLASS 2:2
REBALANCE

UPDATE CLASS 2:2
REMOVE

UPDATE CLASS 2:2
RE-INSERT

FIRST RBTREE TRANSFORMATION

281

THE HTB CLASS IS NOW THE ROOT NODE

HTB_CLASS XSTATS

282

ATTACK OVERVIEW

283

❯ LEAK RB_LEFT PTR THROUGH
 CLASS’S XSTATS

ATTACK OVERVIEW

284

❯ LEAK RB_LEFT PTR THROUGH
 CLASS’S XSTATS

❯ INCREMENT PTR
 POINT 8 BYTES BEFORE
 NEXT HTB->CEIL.RATE FIELD

ATTACK OVERVIEW

285

❯ LEAK RB_LEFT PTR THROUGH
 CLASS’S XSTATS

❯ INCREMENT PTR
 POINT 8 BYTES BEFORE
 NEXT HTB->CEIL.RATE FIELD

❯ FORGE RB_RIGHT PTR WITH
 HTB->CEIL.RATE, POINT 16 BYTES
 BEFORE HTB->LEAF.Q

ATTACK OVERVIEW

286

❯ LEAK RB_LEFT PTR THROUGH
 CLASS’S XSTATS

❯ INCREMENT PTR
 POINT 8 BYTES BEFORE
 NEXT HTB->CEIL.RATE FIELD

❯ FORGE RB_RIGHT PTR WITH
 HTB->CEIL.RATE, POINT 16 BYTES
 BEFORE HTB->LEAF.Q

❯ REPLACE HTB->LEAF.Q WITH
 INCREMENTED PTR

LEAK THE RB_LEFT NODE POINTER

287

LEAK THE RB_LEFT NODE POINTER

288

INCREMENT THE RB_LEFT NODE POINTER

289

INCREMENT THE RB_LEFT NODE POINTER

290

INCREMENT THE RB_LEFT NODE POINTER

291

INCREMENT THE RB_LEFT NODE POINTER

292

INCREMENT THE RB_LEFT NODE POINTER

293

FORGE AN RB_RIGHT NODE POINTER

294

FORGE AN RB_RIGHT NODE POINTER

295

FORGE AN RB_RIGHT NODE POINTER

296

REPLACE HTB LEAF QDISC WITH
INCREMENTED PTR (FAKE 2:3)

297

298

REPLACE HTB LEAF QDISC WITH
INCREMENTED PTR (FAKE 2:3)

299

REPLACE HTB LEAF QDISC WITH
INCREMENTED PTR (FAKE 2:3)

PACKETS MUST BE ENQUEUED
BEFORE THE PTR IS CORRUPTED

300

DELAYED TRIGGER

❯ CHANGE TBF RATE

❯ SEND PACKETS

❯ PACKETS WILL DEQUEUE IN ~5 SECONDS

REPLACE HTB->LEAF.Q WITH INCREMENTED PTR

301

REMOVE 2:5

REPLACE HTB->LEAF.Q WITH INCREMENTED PTR

302

REMOVE 2:5 REMOVE 2:2

303

REPLACE HTB->LEAF.Q WITH INCREMENTED PTR

TREE IS REBALANCED

304

REPLACE HTB->LEAF.Q WITH INCREMENTED PTR

305

REPLACE HTB->LEAF.Q WITH INCREMENTED PTR

306

REPLACE HTB->LEAF.Q WITH INCREMENTED PTR

REPLACE HTB->LEAF.Q WITH INCREMENTED PTR

307

308

REPLACE HTB->LEAF.Q WITH INCREMENTED PTR

RIP CONTROL

309

RIP CONTROL

310

RIP CONTROL

311

WAIT FOR PACKETS TO DEQUEUE…

RIP CONTROL

312

⚡ ⚡

STACK PIVOT INTO CPU_ENTRY_AREA

RIP CONTROL

WAIT BUT NOW CPU_ENTRY_AREA IS RANDOMIZED!!!

313

STACK PIVOT INTO CPU_ENTRY_AREA

RIP CONTROL

WAIT BUT NOW CPU_ENTRY_AREA IS RANDOMIZED!!!

314

STACK PIVOT INTO CPU_ENTRY_AREA

NO PROBLEM
KASLR AND CEA LEAKS?

315

316

317

ALL TARGETS PWNED

318

PWN OR DRINK

319

LIVE DEMO

320

CLOSING THOUGHTS

321

THE END

322

OR MAYBE NOT?

323

https://docs.google.com/file/d/1j_5Pxa2IOD1d4OreSTsF9X_k-SMN03Fr/preview

325

ACKNOWLEDGEMENTS

Mengjia Yan
MIT MATCHA Group

326

Larry Yuan
Cure53
larry.sh

Timothy Herchen
AOPS

anemato.de

Bryce Casaje
Zellic

brycec.me

ACKNOWLEDGEMENTS

syst3mfailure.io
savy@syst3mfailure.io

willsroot.io
will@willsroot.io

cor.team
@cor_ctf

327

THANK YOU!

An RbTree Family Drama
Exploiting a Linux Kernel 0-day Through Red-Black Tree

Transformations

Savino Dicanosa, William Liu 328

