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LINUX NETWORK SCHEDULER
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INITIAL INFINITE LOOP REPRO
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CAN WE UNLEASH 
A MORE SEVERE 
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USE TBF TO BLOCK DEQUEUE
BYPASS INFINITE LOOP

TRIGGER UAF
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● ❯    FORCE VERY LOW RATE
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❯    SETUP HFSC + NETEM 
❯    TRIGGER DOUBLE INSERTION

CVE-2025-38001: USE-AFTER-FREE



75

● ❯    FREE THE CLASS
❯    TRIGGER UAF BY CLASS INSERTION
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CVE-2025-38001: USE-AFTER-FREE

EL_NODE



- SETUP TBF AS ROOT QDISC WITH A 
VERY LOW RATE AND DISABLE 
DEQUEUE BY SENDING PACKETS TO 
THE INTERFACE

- SETUP HFSC + NETEM AND 
TRIGGER THE DOUBLE CLASS 
INSERTION (THE INFINITE LOOP IS 
BYPASSED)

- TRIGGER THE UAF BY FREEING THE 
VULNERABLE CLASS AND INSERTING 
A NEW ONE
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BONUS! 

❯   DATA-ONLY ATTACK BASED ON RBTREE
      TRANSFORMATIONS (PTR COPY 🡢 PAGE-UAF)

❯   PORTABLE WORKS ON MULTIPLE TARGETS

❯   RELIABLE VERY HIGH SUCCESS RATE (>99%)  
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❯    SELF-BALANCING BINARY SEARCH TREE

❯    FOLLOWS COLOR RULES TO STAY BALANCED      

❯    REBALANCES TO SATISFY RULES WHEN MODIFIED

C

WHAT IS A RED-BLACK-TREE?



RB_NODE METADATA UPDATE GIVES
POINTER COPY PRIMITIVES
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- PARENT NODE ADDRESS
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__RB_PARENT_COLOR (OFF=0)

- PARENT NODE ADDRESS

- NODE COLOR (1 BIT)

1  = RB_BLACK

0 = RB_RED

RB_RIGHT (OFF=8)

RB_LEFT    (OFF=16)
RED-BLACK TREE NODES
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MMAP PAGE VECTOR



❯    WE CONTROL # OF PAGES

❯    WE CONTROL PAGE ORDER

❯    PAGES CAN MAP TO USERSPACE 

ATTACK COMPONENTS: PAGE VECTORS
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ATTACK COMPONENTS: PAGE VECTORS
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❯    FREE HFSC CLASS AND REPLACE IT WITH PGV

RB_NODE REMAP VIA PACKET_MMAP
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❯    FREE HFSC CLASS AND REPLACE IT WITH PGV
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RB_NODE REMAP VIA PACKET_MMAP

❯    FREE HFSC CLASS AND REPLACE IT WITH PGV

❯    OVERWRITE PAGE PTR WITH RB_NODE PTR

❯    REMAP RB_NODE WITH PACKET_MMAP
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PTR COPY PRIMITIVE OVERVIEW: THE EXPLOIT



IT’S COMPLICATED…
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PTR COPY PRIMITIVE OVERVIEW: THE EXPLOIT



PREPARING THE ATTACK
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USE TBF TO BLOCK DEQUEUE
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SATURATE PARTIALS, SETUP VULN 
CLASS

PREPARING THE ATTACK
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NUM_PGV_BEFORE = 16
NUM_PGV_AFTER = 32

CLASS :2 ALLOCATION + PGV SPRAY

PREPARING THE ATTACK
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HFSC_CLASS EL_NODEPREPARING THE ATTACK
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HFSC_CLASS EL_NODEPREPARING THE ATTACK



HFSC_CLASS (C1) REPLACED BY PGV 
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PREPARING THE ATTACK
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RBTREE INSERT



RED-BLACK TREE AFTER 
CLASS 2:2 INSERTION

RED-BLACK TREE FROM 
PAGE P’s PERSPECTIVE
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👶

👩
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RBTREE INSERT

CLASS :2 EL_NODE 
PTR LEAKED TO 

USERSPACE



151

RBTREE INSERT



EVIL GRANDPA INFILTRATES THE TREE

152



153

EVIL GRANDPA INFILTRATES THE TREE



154

EVIL GRANDPA INFILTRATES THE TREE



155

EVIL GRANDPA INFILTRATES THE TREE

👩

👶



156
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RBTREE UPDATE - RE-INSERT
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RBTREE UPDATE - RE-INSERT
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RBTREE UPDATE - RE-INSERT

👶 ?!?!
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RBTREE UPDATE - RE-INSERT
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RBTREE REMOVE

WELL, NOT YET…



PAGE DUPLICATION TO PAGE-UAF
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THE PAGE REFCOUNT IS 3

❯    ORIGINAL PGV

❯    MMAPPED TO USERSPACE

❯    MMAPPED AGAIN
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THE # OF REFERENCES IS 4

❯    ORIGINAL PGV

❯    MMAPPED TO USERSPACE

❯    MMAPPED AGAIN

❯    TARGET PGV

PAGE DUPLICATION TO PAGE-UAF
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PAGE-UAF
AND NOW?
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SIGNALFD

ENABLES SIGNAL HANDLING 
THROUGH A FILE DESCRIPTOR
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LET’S WRITE BACKWARDS
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FROM PAGE-UAF TO ROOT VIA SIGNALFD FILES



MULTIPLE TARGETS PWNED WITH THE SAME EXPLOIT
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DEBIAN 12 KERNELCTF LTS

 UBUNTU  22.04
KERNELCTF COS
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PWN OR DRINK



LIVE DEMO
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BREAKING KCTF POW
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MITIGATIONS OVERVIEW
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KMALLOC_SPLIT_VARSIZE
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OK JUST CROSS CACHE RIGHT?
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SLAB_VIRTUAL
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SOOO WEAKER CROSS CACHE?
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SLAB_VIRTUAL
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SLAB_VIRTUAL
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WE CANNOT USE PGV
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240



241

RANDOM_KMALLOC_CACHES



242

RANDOM_KMALLOC_CACHES



243

RANDOM_KMALLOC_CACHES



244

RANDOM_KMALLOC_CACHES



245

RANDOM_KMALLOC_CACHES



REMEMBER
NO CROSS CACHE
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HFSC_CHANGE_CLASS

HTB_CHANGE_CLASS
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HFSC_CHANGE_CLASS

RANDOM KMALLOC SEED

RANDOM KMALLOC SEED

HTB_CHANGE_CLASS
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RANDOM_KMALLOC_CACHES



HFSC_CHANGE_CLASS

_RET_IP_ IS THE SAME

RANDOM KMALLOC SEED

RANDOM KMALLOC SEED

HTB_CHANGE_CLASS
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RANDOM_KMALLOC_CACHES



MITIGATIONS - QUICK RECAP

❯   KMALLOC_SPLIT_VARSIZE KILLS PGV

❯   SLAB_VIRTUAL KILLS CROSS CACHE

❯   RANDOM_KMALLOC_CACHES LIMITS TYPE CONFUSION
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☠ PWNING MITIGATION ☠
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offsetof(struct hfsc_class, qdisc) = 0x98
offsetof(struct htb_class, bstats.packets) = 0x98

INITIAL ATTEMPT
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offsetof(struct hfsc_class, qdisc) = 0x98
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REQUIRES 18 QUINTILLION PACKETS 
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offsetof(struct hfsc_class, qdisc) = 0x98
offsetof(struct htb_class, bstats.packets) = 0x98

REQUIRES 18 QUINTILLION PACKETS TO FAKE A POINTER18,000,000,000,000,000,000+
PACKETS

INITIAL ATTEMPT
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Quotes and Aphorisms of Plato

PLANNING THE ATTACK
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offsetof(struct hfsc_class, el_node.rb_left)   = 0xB0
offsetof(struct htb_class, xstats.lends) = 0xB0

PLANNING THE ATTACK
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❯    OVERLAP HFSC_CLASS WITH HTB_CLASS

❯    TRIGGER UPDATE TO WRITE RB_NODE INTO HTB_CLASS

❯    DUMP CLASS’S XSTATS TO LEAK RB_LEFT PTR
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❯    OVERLAP HFSC_CLASS WITH HTB_CLASS

❯    TRIGGER UPDATE TO WRITE RB_NODE INTO HTB_CLASS

❯    DUMP CLASS’S XSTATS TO LEAK RB_LEFT PTR

❯    SEND PKTS TO CLASS TO INCREMENT RB_LEFT PTR



PREPARING THE ATTACK
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INSERT FOUR NODES



PREPARING THE ATTACK
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FREE CLASS 2:1



PREPARING THE ATTACK
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FREE CLASS 2:1
REPLACE THE OBJECT WITH AN 

HTB CLASS (1:2)



FIRST RBTREE TRANSFORMATION
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DELETE CLASS 2:4



FIRST RBTREE TRANSFORMATION
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DELETE CLASS 2:4
THE HTB CLASS BECOMES 
NODE 2:3’S RIGHT CHILD



FIRST RBTREE TRANSFORMATION
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UPDATE CLASS 2:2 
REMOVE
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UPDATE CLASS 2:2 
RE-INSERT

UPDATE CLASS 2:2 
REMOVE



FIRST RBTREE TRANSFORMATION
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UPDATE CLASS 2:2 
REBALANCE

UPDATE CLASS 2:2 
REMOVE

UPDATE CLASS 2:2 
RE-INSERT



FIRST RBTREE TRANSFORMATION
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THE HTB CLASS IS NOW THE ROOT NODE



HTB_CLASS XSTATS

282



ATTACK OVERVIEW
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❯    LEAK RB_LEFT PTR THROUGH
       CLASS’S XSTATS



ATTACK OVERVIEW
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❯    LEAK RB_LEFT PTR THROUGH
       CLASS’S XSTATS

❯   INCREMENT PTR
       POINT 8 BYTES BEFORE
       NEXT HTB->CEIL.RATE FIELD
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❯    LEAK RB_LEFT PTR THROUGH
       CLASS’S XSTATS

❯   INCREMENT PTR
       POINT 8 BYTES BEFORE
       NEXT HTB->CEIL.RATE FIELD

❯   FORGE RB_RIGHT PTR WITH
       HTB->CEIL.RATE, POINT 16 BYTES
       BEFORE HTB->LEAF.Q 

❯   REPLACE HTB->LEAF.Q WITH
      INCREMENTED PTR 
       



LEAK THE RB_LEFT NODE POINTER
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INCREMENT THE RB_LEFT NODE POINTER
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INCREMENT THE RB_LEFT NODE POINTER
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INCREMENT THE RB_LEFT NODE POINTER
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FORGE AN RB_RIGHT NODE POINTER 
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FORGE AN RB_RIGHT NODE POINTER 
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FORGE AN RB_RIGHT NODE POINTER 
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REPLACE HTB LEAF QDISC WITH 
INCREMENTED PTR (FAKE 2:3)

297



298

REPLACE HTB LEAF QDISC WITH 
INCREMENTED PTR (FAKE 2:3)
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REPLACE HTB LEAF QDISC WITH 
INCREMENTED PTR (FAKE 2:3)

PACKETS MUST BE ENQUEUED
BEFORE THE PTR IS CORRUPTED
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DELAYED TRIGGER

❯   CHANGE TBF RATE

❯   SEND PACKETS

❯   PACKETS WILL DEQUEUE IN ~5 SECONDS



REPLACE  HTB->LEAF.Q WITH INCREMENTED PTR

301

REMOVE 2:5



REPLACE  HTB->LEAF.Q WITH INCREMENTED PTR
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REMOVE 2:5 REMOVE 2:2
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REPLACE  HTB->LEAF.Q WITH INCREMENTED PTR

TREE IS REBALANCED
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REPLACE  HTB->LEAF.Q WITH INCREMENTED PTR
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REPLACE  HTB->LEAF.Q WITH INCREMENTED PTR
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REPLACE  HTB->LEAF.Q WITH INCREMENTED PTR



REPLACE  HTB->LEAF.Q WITH INCREMENTED PTR
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REPLACE  HTB->LEAF.Q WITH INCREMENTED PTR



RIP CONTROL
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RIP CONTROL
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RIP CONTROL
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WAIT FOR PACKETS TO DEQUEUE…



RIP CONTROL
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⚡ ⚡ 

STACK PIVOT INTO CPU_ENTRY_AREA



RIP CONTROL

WAIT BUT NOW CPU_ENTRY_AREA IS RANDOMIZED!!!
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STACK PIVOT INTO CPU_ENTRY_AREA



RIP CONTROL

WAIT BUT NOW CPU_ENTRY_AREA IS RANDOMIZED!!!

314

STACK PIVOT INTO CPU_ENTRY_AREA



NO PROBLEM 
KASLR AND CEA LEAKS?
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ALL TARGETS PWNED
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PWN OR DRINK
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LIVE DEMO
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CLOSING THOUGHTS
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THE END
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OR MAYBE NOT?
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https://docs.google.com/file/d/1j_5Pxa2IOD1d4OreSTsF9X_k-SMN03Fr/preview
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