= SYN

Paint it Blue: Attacking the Bluetooth Stack

HEXACON
10-11 October 2025

Speakers £ SYNACKTIV

Mehdi Talbi, PhD. Etienne Helluy-Lafont, PhD.
Security Researcher at Synacktiv Security Researcher at Synacktiv

= SYNACKTIV

Introduction

Introduction 5 SYNACKTIV

= Bluetooth is still an attacker's target of choice
= Supported by every single mobile phones nowadays

= Always-on on many devices

= Proximity O-click attack surface

= [t has room for interesting vulnerabilities
= e.g. Google's red team presentation at OffensiveCon'25

= A collection of memory corruption in Android's BT stack

= |ets see how a full exploit can be developed

Outline ZSYNACKTIV

= Quick overview of the Bluetooth Stack
= CVE-2023-40129

= Exploitation primitives

= Code execution on Jemalloc devices

= Code execution on Scudo devices

= Conclusion

The Bluetooth Stack £ SYNACKTIV

TCPAP Host

| |

(][] =]
=) () (o) (0 B0 (=) 8 (=

D Authentication

Required

_ =
Authentication

L = ol

The Blueblue Framework ESYNACKTIV

Python framework built on top of BlueBorne's code

Built on top of the HCI layer

Simple implementations for L2ZCAP, ERTM channels, etc.

acl = ACLConnection(src_bdaddr, dst_bdaddr, auth_mode = 'justworks')
gatt = acl. l2cap_connect(psm=PSM_ATT, mtu=672)
gatt.send_frag(p8(GATT_READ)+pl16(1234))

print(gatt.recv())

Very convenient to try ideas on a Bluetooth stack

Authentication in Bluetooth BSYNACKTIV

Many Bluetooth services require authentication
= GAP, BNEP, AVCTP, etc.

Usually done by pairing, with pin verification

Several methods available, with various security level
= MITM resistant or no, ...

Android adds fine-grained ACL for paired devices
= Access to contacts, SMS, etc.

Authentication in Bluetooth BSYNACKTIV

L2CAP Authentication in Floride

uintl6_t L2CA_Register2(uintl6_t psm, const tL2CAP_APPL_INFO& p_cb_info,
bool enable_snoop, tL2CAP_ERTM_INFO* p_ertm_info,
uintl6_t my_mtu, uintl6_t required_remote_mtu,
uintl6_t sec_level)

= Most channels require authentication + encryption

if (!L2CA_Register2(BT_PSM_BNEP, bnep_cb.reg_info, false /* enable_snoop */,
nullptr, BNEP_MTU_SIZE, BNEP_MTU_SIZE,
BTA_SEC_AUTHENTICATE | BTA_SEC_ENCRYPT)) {
BNEP_TRACE_ERROR("BNEP - Registration failed");
return BNEP_SECURITY_FAIL;

Authentication in Bluetooth

Just Works, Still Works

= But.. some devices have no input/output capabilities
= No display or keyboard to verify a PIN

= There is an authentication method for this
= |t Just Works"

= Allows authenticating to Fluoride without user interaction

= Comes with some shortcomings
= Breaks existing pairing with same Bluetooth Address (BDADDR)

= Does not provide full access (not MITM resistant), ...

= SYNACKTIV

10

The Bug

= SYNACKTIV

n

The Bug

/\ CVE-2023-40129

= Heap overflow in the GATT server
= Reachable without authentication or user interaction

= |nteger underflow leading to a 64 KB memcpy heap/heap

= SYNACKTIV

12

The Bug

= Fluoride implements a GATT client/server

Allows setting or getting data attributes

= The vulnerability affects GATT_RSP_READ_MULTI_VAR

= Command to request multiple attributes at once

Request: list of attribute's handles

0

1

= SYNACKTIV

opcode

handle

handle

Reply: length/value of returned attributes

0 1

I

3

value

13

The Bug = SYNACKTIV

= Replying to GATT read multi requests

static void build_read_multi_rsp(tGATT_SR_CMD* p_cmd, uintl6_t mtu) {
uintl6_t 1ii, total_len, len;
uint8_t* p;
bool is_overflow = false;

len = sizeof (BT_HDR) + L2CAP_MIN_OFFSET + mtu;
BT_HDR* p_buf = (BT_HDR*)osi_calloc(len); // [0]
p_buf->offset = L2CAP_MIN_OFFSET;

p = (uint8_t*)(p_buf + 1) + p_buf->offset;

= Declares length variables as short unsigned int

O. Allocate a buffer large enough to hold MTU
= There is a vulnerability here too (CVE-2023-35673) but that's another story

14

The Bug

= Appending a value to the reply buffer

total_len = (p_buf->len + p_rsp->attr_value.len);
if (p_cmd->multi_req.variable_len) {

total_len += 2;
}

if (total_len > mtu) {
/* just send the partial response for the overflow case */
len = p_rsp->attr_value.len - (total_len - mtu);

[...]

memcpy(p, p_rsp->attr_value.value, len);

1. Compute the space required to append the attribute (total_len)
2. Add 2 to encode the attribute's length

3. Compute the length to append, but forgets to account for the 2-bytes from [2]
= Cansetlento-1or-2(as an unsigned short integer)

4. Huge memcpy of ~ 64 KB (Oxfffe-Oxffff)

= SYNACKTIV

/7 [1]

/7 [2]

/7 [3]

// [4]

15

The Bug = SYNACKTIV

= Causes a massive heap overflow of ~ 64 KB

= Source: heap buffer of ~ 600 bytes of GATT attribute (not controlled by the

attacker)
= Can be partially controlled post-pairing by setting GATT attributes

= Destination: Heap buffer with controllable size, depending on the MTU
configuration

= A bit messy, but good enough for RCE !

The Bug

= SYNACKTIV

Source

Destination

memcpy(src, dst, OXFFFF)

GATT attribute
~ 600 bytes

(Contents not controlled)

malloc'd buffer
(Controlled size)

17

Exploitation Primitives

= SYNACKTIV

18

Exploitation Primitives B SYNACKTIV

Persistent Data Allocation

Heap spraying in Fluoride

= We need to control the heap layout

= Put some controlled data in the source buffer

= Shape the destination heap
= But there are virtually no persistent allocation in Fluoride

= Packet buffers are typically freed upon transmission to the controller

Solution

= Force packet allocations to become persistent

Exploitation Primitives

Persistent Data Allocation

ACL Congestion
= Control-flow feature offered by the Bluetooth specification
= o avoid Bluetooth Controller's memory exhaustion

= Easy to toggle on Cypress Bluetooth Controllers
= Avendor-specific HCl command allows us to simulate ACL congestion

= A peer under congestion can still send messages to the remote peer

= SYNACKTIV

20

Exploitation Primitives

Persistent Data Allocation

Rl eeE

= SYNACKTIV

21

Exploitation Primitives

Persistent Data Allocation

ACL Congestion

= Fluoride gracefuly handles ACL congestion

= Messages are processed and responses are inserted into a queue

= Quota limits message queuing during congestion
= But there is no quota on the signaling channel

= All pending messages are freed when the connection is closed

= SYNACKTIV

22

Exploitation Primitives

Controlled Data Allocation

= |nvalid L2CAP config requests
= Rejected options are sent back to the peer (CONFIG REJ messages)

= Allocations of controlled size and data

void 12cu_send_peer_config_rej(tL2C_CCB* p_ccb, uint8_t* p_data,
uintl6_t data_len, uintl6_t rej_len) {
uintl6_t len, cfg_len, buf_space, leni;
uint8_t *p, *p_hci_len, *p_data_end;
uint8_t cfg_code;

VA4

len = BT_HDR_SIZE + HCI_DATA PREAMBLE_SIZE + L2CAP_PKT_OVERHEAD +
L2CAP_CMD_OVERHEAD + L2CAP_CONFIG_RSP_LEN;

BT_HDR* p_buf = (BT_HDR*)osi_malloc(len + rej_len);

VA4

= SYNACKTIV

23

Exploitation Primitives

Heap shaping primitives

More shaping primitives

= Allocations that can be allocated / freed on demand

= Useful objects to build read / write primitives
Enhanced Retransmission Mode (ERTM)

= Reliable transport over L2CAP: Sequence numbering, ack, retransmission

= Two ways to force persistent allocations:
= Start transmission with seq_tx = 1
— Since seq_tx = 0 is missing, the peer holds all subsequent messages in memory

Controlled size + Controlled data

= Do not acknowledge incoming messages

= SYNACKTIV

24

Exploitation Primitives B SYNACKTIV

Persistent Data Allocation

Enhanced Retransmission Mode (ERTM) - Limitations

A Quota

= ERTM messages limited by a quota
= UP to 10 messages per L2CAP channel

/\ Authenticated channels
= ERTM is supported by a subset of L2ZCAP channels (GAP, AVCTP)

= Authentication is required on all ERTM-enabled channels

25

Exploitation Primitives

Read and Write Primitives

Bluetooth packets in Fluoride

= Simple data structure
= len : Length of data

= offset : Position of the data

= No pointer — Easy to forge

typedef struct {
uintl6_t event;
uintl6_t len;
uintl6e_t offset;
uintl6_t layer_specific;
uint8_t datal[];

1} BT_HDR;

= SYNACKTIV

26

Exploitation Primitives

Read and Write Primitives

Relative Read Primitive

1. Force Fluoride to send an ERTM fragment

2. Corrupt the pending fragment
= — Alter len and offset fields

3. Request its retransmission
= — Leak up to 64 KB of heap data

= SYNACKTIV

DATA

LAYER SPECIFIC

OFFSET

LEN

EVENT

21

Exploitation Primitives B SYNACKTIV

Read and Write Primitives

Forcing an ERTM transmission

= AVCTP browsing channel is a good candidate
= Supports ERTM mode

= GET_FOLDER_ITEMS request:
= Request metadata of a music playlist (song name, artist name, etc.)

= Select metadata's attributes — Force a response message of a controlled size (same bin
as vulnerable object)

28

Exploitation Primitives

Read and Write Primitives

Relative Write Primitive

1. Send an ERTM fragment
2. Corrupt it to control offset and len

3. Send next fragment
= — Subsequent fragments are copied using len and offset 's
BT_HDR fields:

memcpy(((uint8_t*)(p_fcrb->p_rx_sdu + 1)) +
p_fcrb->p_rx_sdu->offset +
p_fcrb->p_rx_sdu->len,

p, p_buf->len);

p_fcrb->p_rx_sdu->len += p_buf->len;

= SYNACKTIV

LAYER SPECIFIC

OFFSET

LEN

EVENT

29

Exploitation Primitives

Code Execution

Target Object
= Fluoride stack uses plenty of callback objects (from

libchrome)

= Multiple function pointers

Target Callback
= The SDP discovery callback is a good candidate

= (Most of) Callback's arguments embedded in the

object
= Callback allocated while establishing an AVRCP conn.

= Callback triggered when closing the related SDP conn.

= SYNACKTIV

retry

Y

disc_db size = 0x1010

SdpCb 's argrs

bdaddr

SdpCb

Run

SDP DISCOVERY
CALLBACK

30

Code Execution on Jemalloc Devices

= SYNACKTIV

31

Code Execution on Jemalloc Devices

Heap Shaping

Heap Shaping Strategy

1. Enable ACL congestion.
2. Spray multiple CONFIG REJ messages

3. Interleave ERTM message allocations during the spray
= ERTM allocations are used to create "holes" in the heap

4. Disable ACL congestion
= CONFIG REJ allocations are freed

5. Free the ERTM allocations
= ERTM allocations are reused by the GAT T-related allocations

= SYNACKTIV

32

Code Execution on Jemalloc Devices

Heap Shaping - Source

Memory grows this wayT

OXZSOI

CONFIG REJ

ERTM
(SEQ_TX =N)

CONFIG REJ

ERTM
(SEQ_TX =2)

CONFIG REJ

ERTM
(SEQ_TX =1)

CONFIG REJ

CONFIG REJ

MORE
CONFIG REJ

CONFIG REJ

IOXZSO

CONTROLLED
DATA

GATT ATTRIBUTE

CONTROLLED
DATA

GATT ATTRIBUTE

CONTROLLED
DATA

GATT ATTRIBUTE

CONTROLLED
DATA

IOXZSO

= SYNACKTIV

33

Code Execution on Jemalloc Devices

Heap Shaping - Dest

Spray Multiple CONFIG REJ messages

Create placeholders for READER and WRITER objects
= With ERTM messages sent on a GAP channel

Create placeholder for vulnerable object
= With ERTM message sent on a second GAP channel

Close first GAP channel

Allocate WRITER and READER objects
Close second GAP channel

Trigger Overflow

Allocate callback object

Overflow

= SYNACKTIV

BT_HDR
(WRITER)

BT_HDR
(READER)

MORE
CONFIG REJ

GATT RESPONSE
(VULN OBJ)

CONFIG REJ

CONFIG REJ

CONFIG REJ

:[OXGO

34

Code Execution on Jemalloc Devices

Fxploitation Scenario

1.
2.

N A

Shape the heap (src & dst)

Trigger overflow and corrupt READER & WRITER
objects

. Allocate the SDP Discovery Callback (EXECUTOR

object)

Request the retransmission of the altered packet
Leak the content of the callback

Rewrite the content of the callback

Trigger the callback

Overflow

= SYNACKTIV

BT_HDR
(WRITER)

BT_HDR
(READER)

MORE
CONFIG REJ

GATT RESPONSE
(VULN OBJ)

CONFIG REJ

CONFIG REJ

CONFIG REJ

:[OXGO

35

Code Execution on Jemalloc Devices

Code Execution

Arguments Control

= 3 argument of SdpCh callback not controlled

= — call an intermediate function: gadget function

uint64_t gadget(gadget_t *obj)
{

int64_t vi;

uint8_t *v2;

uinte4_t *v3;

vl = obj->field_28;
v2 = obj->field_20;
v3 = (obj->field_30 + (vi >> 1));
if ((vi & 1) '=0)

v2 = *&v2[*v3];
return (v2)(v3, obj->field_38, obj->field_40, obj->field_44, obj->field_4c);

= SYNACKTIV

retry

alise_6l2 > Size = 0x1010

SdpCb 's argrs

bdaddr

SdpCh

Run

SDP DISCOVERY
CALLBACK

36

Code Execution on Jemalloc Devices

Code Execution

Multiple Function Calls

= Call to mprotect + jump to shellcode

void list_clear(list_t* 1list) {
CHECK(list != NULL);
for (list_node_t* node = list->head; node;)
node = list_free_node_(list, node);
list->head = NULL;
list->tail = NULL;
list->1length = 0;
}
static list_node_t* list_free_node_(list_t* list, list_node_t* node) {
CHECK(list != NULL);
CHECK(node != NULL);
list_node_t* next = node->next;
if (list->free_cb) list->free_ch(node->data);
list->allocator->free(node);
--list->length;

return next;

* Inject a fake list object

* = Require controlled data at a known address

= SYNACKTIV

31

Code Execution on Jemalloc Devices

Code Execution

Controlled Data at Known Address

= [eak the heap pointer of the SDP discovery callback
The callback has a reference to a Ox1010 bytes object

= Spray objects of the same size (with controlled data)
— Initiate spray right after the callback allocation

= SYNACKTIV

disc_db

SSS

CCCCCCCC

> size = 0x1010

38

Code Execution on Jemalloc Devices

Code Execution

list_clear

Run = gadget

= gadget — call list_clear(list)

1. list->free_cb(node->data) — gadget —
syscall(NR_mprotect)

2. |i5t—>-—>free(node) — gadget — -

= SYNACKTIV

39

= SYNACKTIV

40

Code Execution on Scudo Devices

= SYNACKTIV

a1

Code Execution on Scudo Devices ESYNACKTIV

Scudo Allocator

Overview

= Hardened security allocator

= Primary allocator: serves small allocations (< Ox10000 bytes)

Building blocks

= Scudo organizes memory into regions

= Aregion is dedicated to allocations of a specific size class (class id)
= Each region is sandwiched between two guard pages

= Aregion is divided into memory blocks

= A block consists of:
16 bytes of metadata

= Memory chunk: actual memory returned to the program when calling malloc

42

Code Execution on Scudo Devices

Scudo Allocator

Memory allocation

= Pick a chunk from the thread-local cache

= Refill cache if no available chunks from the global freelist
= Pulla TransferBatch (group of pre-allocated chunks)

= Populate the freelist with a group of TransferBatches :
= Allocate memory from region
= Split memory into individual blocks
= Shuffle memory blocks

= Group memory blocks into TransferBatches

= SYNACKTIV

43

Code Execution on Scudo Devices ESYNACKTIV

Scudo Allocator - Mitigations

Memory Blocks Shuffling

= Applied per batch of memory blocks rather than the entire region

= Number of randomized blocks depends on the class size
= N =52 (4" 13) for allocations smaller than Ox350 bytes

= How to make the target object reachable from the vulnerable object during the
overflow?

— Insert N intermediate objects between the vulnerable object and the target object

A

N chunks allocated in random order

44

Code Execution on Scudo Devices

Scudo Allocator - Mitigations

Checksum verification

Memory chunks prefixed by metadata including a checksum
= Checksum verified when a chunk is freed
= Program aborts if the checksum is corrupted

= — Qverflow on freed chunks or on persistent allocations

= SYNACKTIV

45

Code Execution on Scudo Devices

Exploitation Strategy

The Need of a New Exploitation Scenario

A Memory shuffling issue

= No relative write primitive
Expects the callback at a fixed offset

Solution

= Trigger overflow twice!!
1. Overwrite a READER object — Memory Leak

2. Overwrite a callback object (EXECUTOR) — Code Execution

= ... And survive to a 64 KB overflow in between

= SYNACKTIV

46

Code Execution on Scudo Devices ESYNACKTIV

Heap Shaping
ERTM| REJ |ERTM| REJ |ERTM| REJ |ERTM REJ
REJ | REJ | REJ | REJ | REJ | REJ | REJ MORE REJ REJ
REJ | REJ | REJ | REJ |ERTM| REJ | REJ MORE REJ REJ
SOURCE - BEFORE OVERFLOW
GATT | REJ |GATT | REJ |GATT | REJ |GATT REJ
REJ | REJ | REJ | REJ | REJ | REJ | REJ MORE REJ REJ
REJ | REJ | REJ | REJ |GATT| REJ | REJ MORE REJ REJ

SOURCE - AFTER OVERFLOW

a1

Code Execution on Scudo Devices HSYNACKTIV

Memory Leak

length

= The SDP Discovery Callback is rarely present
in the leaked heap data

type

HciPacket

= However, a second callback object was
consistently observed in the leaked data

size = 0x250

\ 4

= [he Capture Callback : on_hol_packet
Log HCI packets

Release

Heap reference Run

Multiple function pointers

CAPTURE CALLBACK

48

Code Execution on Scudo Devices

Code Execution

= Corrupt the SDP Discovery Callback

= Memory chunk shuffling makes it hard to
rewrite reliably all the fields of the callback
object (alignement issue)

= Use a pivot gadget — Require overwriting
only 2 specific fields:

LDR X0, [X0O]

MOV W8, Wi

MOV W1, W2

MOV W2, W8

LDR X3, [XO,#8]
BR X3

mprotect flags

payload address

mprotect syscall NR

syscall gadget

— shellcode ptr

data

Y

next = NULL

+—t
nod

free_cb = gadget

length =1

tail = list_clear

head

call to mprotect

€ call to shellcode

allocator j

= SYNACKTIV

Run = pivot

payload addr

Run = pivot

payload addr

Run = pivot

payload addr

PAYLOAD

CALLBACK

49

Code Execution on Scudo Devices

Post Exploitation

Shellcode

= Control channel implemented over Bluetooth
= Can receive & send Bluetooth frames

= Expose a simple command handler
= Run shell command, upload file, etc.

= Register a signal handler to catch SIGSEGV signals
= Keep Bluetooth process in a state of clinical death

= SYNACKTIV

50

Conclusion

= SYNACKTIV

51

Conclusion

conclusion

(® CVE-2023-40129
= (Critical vulnerability in the Bluetooth stack
* No user interaction
* No authentication

* Non-trivial to exploit

@ 2 Exploits

= Remote code execution on Android devices

* Successfully tested on Xiaomi 12T (Jemalloc) & Samsung A54 (Scudo)

/\ Reliability
= Bluetooth process crashes and silently reboots in case of a failed attempt
= Retry!! (in aloop)
= [Estimated Time of Shell (ETS): ~2mn (Jemalloc), ~5mn (Scudo)

= SYNACKTIV

52

Conclusion

conclusion

The Gabledorsche Stack (GD)
= |ntroduced in Android 12, default stack in Android 13

= Bluetooth stack rewrite in Rust (work in progress)

= Exploit still functional with GD enabled
= Only low-level layers have been rewritten as of late 2023

= SYNACKTIV

53

References

References

References

= BlueBorne
= Ben Seri, Gregory Vishnepolsky (Armis Labs)

= O-click RCE on the VI component: Pwn20wn Automotive Edition
= Mikhail Evdokimov (PCAutomotive) - Hexacon'24

= Fighting Cavities: Securing Android Bluetooth by Red Teaming
= Jeong Wook Oh, Rishika Hooda and Xuan Xing (Google) - OffensiveCon'25

Acknowledgement

= Kevin Denis aka Oxmitsurugi

= SYNACKTIV

54

= SYN

o
IN nhttps://www.linkedin.com/company/synacktiv
y https:/ /twitter.com/synacktiv

A : ;
0 https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

