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Introduction 5 SYNACKTIV

= Bluetooth is still an attacker's target of choice
= Supported by every single mobile phones nowadays

= Always-on on many devices

= Proximity O-click attack surface

= [t has room for interesting vulnerabilities
= e.g. Google's red team presentation at OffensiveCon'25

= A collection of memory corruption in Android's BT stack

= |ets see how a full exploit can be developed



Outline ZSYNACKTIV

= Quick overview of the Bluetooth Stack
= CVE-2023-40129

= Exploitation primitives

= Code execution on Jemalloc devices

= Code execution on Scudo devices

= Conclusion
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TCPAP Host

| |

(][] =]
=) () (o) (0 B0 (=) 8 (=

D Authentication

Required

_ =
Authentication

L = ol




The Blueblue Framework ESYNACKTIV

Python framework built on top of BlueBorne's code

Built on top of the HCI layer

Simple implementations for L2ZCAP, ERTM channels, etc.

acl = ACLConnection(src_bdaddr, dst_bdaddr, auth_mode = 'justworks')
gatt = acl. l2cap_connect(psm=PSM_ATT, mtu=672)
gatt.send_frag(p8(GATT_READ)+pl16(1234))

print(gatt.recv())

Very convenient to try ideas on a Bluetooth stack




Authentication in Bluetooth BSYNACKTIV

Many Bluetooth services require authentication
= GAP, BNEP, AVCTP, etc.

Usually done by pairing, with pin verification

Several methods available, with various security level
= MITM resistant or no, ...

Android adds fine-grained ACL for paired devices
= Access to contacts, SMS, etc.




Authentication in Bluetooth BSYNACKTIV

L2CAP Authentication in Floride

uintl6_t L2CA_Register2(uintl6_t psm, const tL2CAP_APPL_INFO& p_cb_info,
bool enable_snoop, tL2CAP_ERTM_INFO* p_ertm_info,
uintl6_t my_mtu, uintl6_t required_remote_mtu,
uintl6_t sec_level)

= Most channels require authentication + encryption

if (!L2CA_Register2(BT_PSM_BNEP, bnep_cb.reg_info, false /* enable_snoop */,
nullptr, BNEP_MTU_SIZE, BNEP_MTU_SIZE,
BTA_SEC_AUTHENTICATE | BTA_SEC_ENCRYPT)) {
BNEP_TRACE_ERROR("BNEP - Registration failed");
return BNEP_SECURITY_FAIL;




Authentication in Bluetooth

Just Works, Still Works

= But.. some devices have no input/output capabilities
= No display or keyboard to verify a PIN

= There is an authentication method for this
= |t Just Works"

= Allows authenticating to Fluoride without user interaction

= Comes with some shortcomings
= Breaks existing pairing with same Bluetooth Address (BDADDR)

= Does not provide full access (not MITM resistant), ...

= SYNACKTIV
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The Bug

= SYNACKTIV
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The Bug

/\ CVE-2023-40129

= Heap overflow in the GATT server
= Reachable without authentication or user interaction

= |nteger underflow leading to a 64 KB memcpy heap/heap

= SYNACKTIV
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The Bug

= Fluoride implements a GATT client/server

Allows setting or getting data attributes

= The vulnerability affects GATT_RSP_READ_MULTI_VAR

= Command to request multiple attributes at once

Request: list of attribute's handles

0

1

= SYNACKTIV
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The Bug = SYNACKTIV

= Replying to GATT read multi requests

static void build_read_multi_rsp(tGATT_SR_CMD* p_cmd, uintl6_t mtu) {
uintl6_t 1ii, total_len, len;
uint8_t* p;
bool is_overflow = false;

len = sizeof (BT_HDR) + L2CAP_MIN_OFFSET + mtu;
BT_HDR* p_buf = (BT_HDR*)osi_calloc(len); // [0]
p_buf->offset = L2CAP_MIN_OFFSET;

p = (uint8_t*)(p_buf + 1) + p_buf->offset;

= Declares length variables as short unsigned int

O. Allocate a buffer large enough to hold MTU
= There is a vulnerability here too (CVE-2023-35673) but that's another story
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The Bug

= Appending a value to the reply buffer

total_len = (p_buf->len + p_rsp->attr_value.len);
if (p_cmd->multi_req.variable_len) {

total_len += 2;
}

if (total_len > mtu) {
/* just send the partial response for the overflow case */
len = p_rsp->attr_value.len - (total_len - mtu);

[...]

memcpy(p, p_rsp->attr_value.value, len);

1. Compute the space required to append the attribute (total_len)
2. Add 2 to encode the attribute's length

3. Compute the length to append, but forgets to account for the 2-bytes from [2]
= Cansetlento-1or-2(as an unsigned short integer)

4. Huge memcpy of ~ 64 KB (Oxfffe-Oxffff)

= SYNACKTIV
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The Bug = SYNACKTIV

= Causes a massive heap overflow of ~ 64 KB

= Source: heap buffer of ~ 600 bytes of GATT attribute (not controlled by the

attacker)
= Can be partially controlled post-pairing by setting GATT attributes

= Destination: Heap buffer with controllable size, depending on the MTU
configuration

= A bit messy, but good enough for RCE !




The Bug

= SYNACKTIV

Source

Destination

memcpy(src, dst, OXFFFF)

GATT attribute
~ 600 bytes

(Contents not controlled)

malloc'd buffer
(Controlled size)
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Exploitation Primitives

= SYNACKTIV
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Exploitation Primitives B SYNACKTIV

Persistent Data Allocation

Heap spraying in Fluoride

= We need to control the heap layout

= Put some controlled data in the source buffer

= Shape the destination heap
= But there are virtually no persistent allocation in Fluoride

= Packet buffers are typically freed upon transmission to the controller

Solution

= Force packet allocations to become persistent




Exploitation Primitives

Persistent Data Allocation

ACL Congestion
= Control-flow feature offered by the Bluetooth specification
= o avoid Bluetooth Controller's memory exhaustion

= Easy to toggle on Cypress Bluetooth Controllers
= Avendor-specific HCl command allows us to simulate ACL congestion

= A peer under congestion can still send messages to the remote peer

= SYNACKTIV
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Exploitation Primitives

Persistent Data Allocation

Rl eeE

= SYNACKTIV
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Exploitation Primitives

Persistent Data Allocation

ACL Congestion

= Fluoride gracefuly handles ACL congestion

= Messages are processed and responses are inserted into a queue

= Quota limits message queuing during congestion
= But there is no quota on the signaling channel

= All pending messages are freed when the connection is closed

= SYNACKTIV
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Exploitation Primitives

Controlled Data Allocation

= |nvalid L2CAP config requests
= Rejected options are sent back to the peer ( CONFIG REJ messages)

= Allocations of controlled size and data

void 12cu_send_peer_config_rej(tL2C_CCB* p_ccb, uint8_t* p_data,
uintl6_t data_len, uintl6_t rej_len) {
uintl6_t len, cfg_len, buf_space, leni;
uint8_t *p, *p_hci_len, *p_data_end;
uint8_t cfg_code;

VA4

len = BT_HDR_SIZE + HCI_DATA PREAMBLE_SIZE + L2CAP_PKT_OVERHEAD +
L2CAP_CMD_OVERHEAD + L2CAP_CONFIG_RSP_LEN;

BT_HDR* p_buf = (BT_HDR*)osi_malloc(len + rej_len);

VA4

= SYNACKTIV
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Exploitation Primitives

Heap shaping primitives

More shaping primitives

= Allocations that can be allocated / freed on demand

= Useful objects to build read / write primitives
Enhanced Retransmission Mode (ERTM)

= Reliable transport over L2CAP: Sequence numbering, ack, retransmission

= Two ways to force persistent allocations:
= Start transmission with seq_tx = 1
— Since seq_tx = 0 is missing, the peer holds all subsequent messages in memory

Controlled size + Controlled data

= Do not acknowledge incoming messages

= SYNACKTIV
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Exploitation Primitives B SYNACKTIV

Persistent Data Allocation

Enhanced Retransmission Mode (ERTM) - Limitations

A Quota

= ERTM messages limited by a quota
= UP to 10 messages per L2CAP channel

/\ Authenticated channels
= ERTM is supported by a subset of L2ZCAP channels (GAP, AVCTP)

= Authentication is required on all ERTM-enabled channels
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Exploitation Primitives

Read and Write Primitives

Bluetooth packets in Fluoride

= Simple data structure
= len : Length of data

= offset : Position of the data

= No pointer — Easy to forge

typedef struct {
uintl6_t event;
uintl6_t len;
uintl6e_t offset;
uintl6_t layer_specific;
uint8_t datal[];

1} BT_HDR;

= SYNACKTIV
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Exploitation Primitives

Read and Write Primitives

Relative Read Primitive

1. Force Fluoride to send an ERTM fragment

2. Corrupt the pending fragment
= — Alter len and offset fields

3. Request its retransmission
= — Leak up to 64 KB of heap data

= SYNACKTIV
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Exploitation Primitives B SYNACKTIV

Read and Write Primitives

Forcing an ERTM transmission

= AVCTP browsing channel is a good candidate
= Supports ERTM mode

= GET_FOLDER_ITEMS request:
= Request metadata of a music playlist (song name, artist name, etc.)

= Select metadata's attributes — Force a response message of a controlled size (same bin
as vulnerable object)
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Exploitation Primitives

Read and Write Primitives

Relative Write Primitive

1. Send an ERTM fragment
2. Corrupt it to control offset and len

3. Send next fragment
= — Subsequent fragments are copied using len and offset 's
BT_HDR fields:

memcpy(((uint8_t*)(p_fcrb->p_rx_sdu + 1)) +
p_fcrb->p_rx_sdu->offset +
p_fcrb->p_rx_sdu->len,

p, p_buf->len);

p_fcrb->p_rx_sdu->len += p_buf->len;

= SYNACKTIV
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Exploitation Primitives

Code Execution

Target Object
= Fluoride stack uses plenty of callback objects (from

libchrome )

= Multiple function pointers

Target Callback
= The SDP discovery callback is a good candidate

= (Most of) Callback's arguments embedded in the

object
= Callback allocated while establishing an AVRCP conn.

= Callback triggered when closing the related SDP conn.

= SYNACKTIV

retry

Y

disc_db size = 0x1010

SdpCb 's argrs

bdaddr

SdpCb

Run

SDP DISCOVERY
CALLBACK
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Code Execution on Jemalloc Devices

= SYNACKTIV
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Code Execution on Jemalloc Devices

Heap Shaping

Heap Shaping Strategy

1. Enable ACL congestion.
2. Spray multiple CONFIG REJ messages

3. Interleave ERTM message allocations during the spray
=  ERTM allocations are used to create "holes" in the heap

4. Disable ACL congestion
= CONFIG REJ allocations are freed

5. Free the ERTM allocations
=  ERTM allocations are reused by the GAT T-related allocations

= SYNACKTIV
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Code Execution on Jemalloc Devices

Heap Shaping - Source

Memory grows this wayT

OXZSOI

CONFIG REJ

ERTM
(SEQ_TX =N)

CONFIG REJ

ERTM
(SEQ_TX =2)

CONFIG REJ

ERTM
(SEQ_TX =1)

CONFIG REJ

CONFIG REJ

MORE
CONFIG REJ

CONFIG REJ

IOXZSO

CONTROLLED
DATA

GATT ATTRIBUTE

CONTROLLED
DATA

GATT ATTRIBUTE

CONTROLLED
DATA

GATT ATTRIBUTE

CONTROLLED
DATA

IOXZSO

= SYNACKTIV
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Code Execution on Jemalloc Devices

Heap Shaping - Dest

Spray Multiple CONFIG REJ messages

Create placeholders for READER and WRITER objects
= With ERTM messages sent on a GAP channel

Create placeholder for vulnerable object
= With ERTM message sent on a second GAP channel

Close first GAP channel

Allocate WRITER and READER objects
Close second GAP channel

Trigger Overflow

Allocate callback object

Overflow

= SYNACKTIV

BT_HDR
(WRITER)

BT_HDR
(READER)

MORE
CONFIG REJ

GATT RESPONSE
(VULN OBJ)

CONFIG REJ

CONFIG REJ

CONFIG REJ

:[OXGO
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Code Execution on Jemalloc Devices

Fxploitation Scenario

1.
2.

N A

Shape the heap (src & dst)

Trigger overflow and corrupt READER & WRITER
objects

. Allocate the SDP Discovery Callback ( EXECUTOR

object)

Request the retransmission of the altered packet
Leak the content of the callback

Rewrite the content of the callback

Trigger the callback

Overflow

= SYNACKTIV
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Code Execution on Jemalloc Devices

Code Execution

Arguments Control

= 3 argument of SdpCh callback not controlled

= — call an intermediate function: gadget function

uint64_t gadget(gadget_t *obj)
{

int64_t vi;

uint8_t *v2;

uinte4_t *v3;

vl = obj->field_28;
v2 = obj->field_20;
v3 = (obj->field_30 + (vi >> 1));
if ( (vi & 1) '=0)

v2 = *&v2[*v3];
return (v2)(v3, obj->field_38, obj->field_40, obj->field_44, obj->field_4c);

= SYNACKTIV

retry

alise_6l2 > Size = 0x1010

SdpCb 's argrs

bdaddr

SdpCh

Run

SDP DISCOVERY
CALLBACK
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Code Execution on Jemalloc Devices

Code Execution

Multiple Function Calls

= Call to mprotect + jump to shellcode

void list_clear(list_t* 1list) {
CHECK(list != NULL);
for (list_node_t* node = list->head; node;)
node = list_free_node_(list, node);
list->head = NULL;
list->tail = NULL;
list->1length = 0;
}
static list_node_t* list_free_node_(list_t* list, list_node_t* node) {
CHECK(list != NULL);
CHECK(node != NULL);
list_node_t* next = node->next;
if (list->free_cb) list->free_ch(node->data);
list->allocator->free(node);
--list->length;

return next;

* Inject a fake list object

* = Require controlled data at a known address

= SYNACKTIV
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Code Execution on Jemalloc Devices

Code Execution

Controlled Data at Known Address

= [eak the heap pointer of the SDP discovery callback
The callback has a reference to a Ox1010 bytes object

= Spray objects of the same size (with controlled data)
— Initiate spray right after the callback allocation

= SYNACKTIV

disc_db

SSS

CCCCCCCC

> size = 0x1010
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Code Execution on Jemalloc Devices

Code Execution

list_clear

Run = gadget

= gadget — call list_clear(list)

1. list->free_cb(node->data) — gadget —
syscall(NR_mprotect)

2. |i5t—>-—>free(node) — gadget — -

= SYNACKTIV
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Code Execution on Scudo Devices

= SYNACKTIV
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Code Execution on Scudo Devices ESYNACKTIV

Scudo Allocator

Overview

= Hardened security allocator

= Primary allocator: serves small allocations (< Ox10000 bytes)

Building blocks

= Scudo organizes memory into regions

= Aregion is dedicated to allocations of a specific size class (class id)
= Each region is sandwiched between two guard pages

= Aregion is divided into memory blocks

= A block consists of:
16 bytes of metadata

= Memory chunk: actual memory returned to the program when calling malloc

42




Code Execution on Scudo Devices

Scudo Allocator

Memory allocation

= Pick a chunk from the thread-local cache

= Refill cache if no available chunks from the global freelist
= Pulla TransferBatch (group of pre-allocated chunks)

= Populate the freelist with a group of TransferBatches :
= Allocate memory from region
= Split memory into individual blocks
= Shuffle memory blocks

= Group memory blocks into TransferBatches

= SYNACKTIV
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Code Execution on Scudo Devices ESYNACKTIV

Scudo Allocator - Mitigations

Memory Blocks Shuffling

= Applied per batch of memory blocks rather than the entire region

= Number of randomized blocks depends on the class size
= N =52 (4" 13) for allocations smaller than Ox350 bytes

= How to make the target object reachable from the vulnerable object during the
overflow?

— Insert N intermediate objects between the vulnerable object and the target object

A

N chunks allocated in random order
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Code Execution on Scudo Devices

Scudo Allocator - Mitigations

Checksum verification

Memory chunks prefixed by metadata including a checksum
= Checksum verified when a chunk is freed
= Program aborts if the checksum is corrupted

= — Qverflow on freed chunks or on persistent allocations

= SYNACKTIV

45



Code Execution on Scudo Devices

Exploitation Strategy

The Need of a New Exploitation Scenario

A Memory shuffling issue

= No relative write primitive
Expects the callback at a fixed offset

Solution

= Trigger overflow twice!!
1. Overwrite a READER object — Memory Leak

2. Overwrite a callback object ( EXECUTOR ) — Code Execution

= ... And survive to a 64 KB overflow in between

= SYNACKTIV
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Code Execution on Scudo Devices ESYNACKTIV

Heap Shaping
ERTM| REJ |ERTM| REJ |ERTM| REJ |ERTM REJ
REJ | REJ | REJ | REJ | REJ | REJ | REJ MORE REJ REJ
REJ | REJ | REJ | REJ |ERTM| REJ | REJ MORE REJ REJ
SOURCE - BEFORE OVERFLOW
GATT | REJ |GATT | REJ |GATT | REJ |GATT REJ
REJ | REJ | REJ | REJ | REJ | REJ | REJ MORE REJ REJ
REJ | REJ | REJ | REJ |GATT| REJ | REJ MORE REJ REJ

SOURCE - AFTER OVERFLOW
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Code Execution on Scudo Devices HSYNACKTIV

Memory Leak

length

= The SDP Discovery Callback is rarely present
in the leaked heap data

type

HciPacket

= However, a second callback object was
consistently observed in the leaked data

size = 0x250

\ 4

= [he Capture Callback : on_hol_packet
Log HCI packets

Release

Heap reference Run

Multiple function pointers

CAPTURE CALLBACK
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Code Execution on Scudo Devices

Code Execution

= Corrupt the SDP Discovery Callback

= Memory chunk shuffling makes it hard to
rewrite reliably all the fields of the callback
object (alignement issue)

= Use a pivot gadget — Require overwriting
only 2 specific fields:

LDR X0, [X0O]

MOV W8, Wi

MOV W1, W2

MOV W2, W8

LDR X3, [XO,#8]
BR X3

mprotect flags

payload address

mprotect syscall NR

syscall gadget

— shellcode ptr

data

Y

next = NULL

+—t
nod

free_cb = gadget

length =1

tail = list_clear

head

call to mprotect

€ call to shellcode

allocator j

= SYNACKTIV

Run = pivot

payload addr

Run = pivot

payload addr

Run = pivot

payload addr

PAYLOAD

CALLBACK
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Code Execution on Scudo Devices

Post Exploitation

Shellcode

= Control channel implemented over Bluetooth
= Can receive & send Bluetooth frames

= Expose a simple command handler
= Run shell command, upload file, etc.

= Register a signal handler to catch SIGSEGV signals
= Keep Bluetooth process in a state of clinical death

= SYNACKTIV
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Conclusion

= SYNACKTIV
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Conclusion

conclusion

(® CVE-2023-40129
= (Critical vulnerability in the Bluetooth stack
* No user interaction
* No authentication

* Non-trivial to exploit

@ 2 Exploits

= Remote code execution on Android devices

* Successfully tested on Xiaomi 12T (Jemalloc) & Samsung A54 (Scudo)

/\  Reliability
= Bluetooth process crashes and silently reboots in case of a failed attempt
= Retry!! (in aloop)
= [Estimated Time of Shell (ETS): ~2mn (Jemalloc), ~5mn (Scudo)

= SYNACKTIV
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Conclusion

conclusion

The Gabledorsche Stack (GD)
= |ntroduced in Android 12, default stack in Android 13

= Bluetooth stack rewrite in Rust (work in progress)

= Exploit still functional with GD enabled
= Only low-level layers have been rewritten as of late 2023

= SYNACKTIV
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