
Paint it Blue: Attacking the Bluetooth Stack
HEXACON

10-11 October 2025

Speakers

Mehdi Talbi, PhD.
Security Researcher at Synacktiv

Etienne Helluy-Lafont, PhD.
Security Researcher at Synacktiv

2

Introduction

3

Introduction

Bluetooth is still an attacker's target of choice
Supported by every single mobile phones nowadays

Always-on on many devices

Proximity 0-click attack surface

It has room for interesting vulnerabilities
e.g. Google's red team presentation at OffensiveCon'25

A collection of memory corruption in Android's BT stack

Lets see how a full exploit can be developed

■

■

■

■

■

■

■

■

4

Outline

Quick overview of the Bluetooth Stack

CVE-2023-40129

Exploitation primitives

Code execution on Jemalloc devices

Code execution on Scudo devices

Conclusion

■

■

■

■

■

■

5

The Bluetooth Stack

6

The Blueblue Framework

Python framework built on top of BlueBorne's code

Built on top of the HCI layer

Simple implementations for L2CAP, ERTM channels, etc.

acl = ACLConnection(src_bdaddr, dst_bdaddr, auth_mode = 'justworks')
gatt = acl.l2cap_connect(psm=PSM_ATT, mtu=672)
gatt.send_frag(p8(GATT_READ)+p16(1234))
print(gatt.recv())

Very convenient to try ideas on a Bluetooth stack

■

■

■

■

7

Authentication in Bluetooth

Many Bluetooth services require authentication
GAP, BNEP, AVCTP, etc.

Usually done by pairing, with pin verification

Several methods available, with various security level
MITM resistant or no, ...

Android adds fine-grained ACL for paired devices
Access to contacts, SMS, etc.

■

■

■

■

■

■

■

8

Authentication in Bluetooth
L2CAP Authentication in Floride

uint16_t L2CA_Register2(uint16_t psm, const tL2CAP_APPL_INFO& p_cb_info,
 bool enable_snoop, tL2CAP_ERTM_INFO* p_ertm_info,
 uint16_t my_mtu, uint16_t required_remote_mtu,
 uint16_t sec_level)

Most channels require authentication + encryption

if (!L2CA_Register2(BT_PSM_BNEP, bnep_cb.reg_info, false /* enable_snoop */,
 nullptr, BNEP_MTU_SIZE, BNEP_MTU_SIZE,
 BTA_SEC_AUTHENTICATE | BTA_SEC_ENCRYPT)) {
 BNEP_TRACE_ERROR("BNEP - Registration failed");
 return BNEP_SECURITY_FAIL;
}

■

9

Authentication in Bluetooth

Just Works, Still Works

But.. some devices have no input/output capabilities
No display or keyboard to verify a PIN

There is an authentication method for this
It "Just Works"

Allows authenticating to Fluoride without user interaction

Comes with some shortcomings
Breaks existing pairing with same Bluetooth Address (BDADDR)

Does not provide full access (not MITM resistant), ...

■

■

■

■

■

■

■

■

10

The Bug

11

The Bug

CVE-2023-40129
Heap overflow in the GATT server

Reachable without authentication or user interaction

Integer underflow leading to a 64 KB memcpy heap/heap

■

■

■

12

The Bug

Fluoride implements a GATT client/server
Allows setting or getting data attributes

The vulnerability affects GATT_RSP_READ_MULTI_VAR

Command to request multiple attributes at once
Request: list of attribute's handles

Reply: length/value of returned attributes

■

■

■

■

■

■

13

The Bug
Replying to GATT read multi requests

 static void build_read_multi_rsp(tGATT_SR_CMD* p_cmd, uint16_t mtu) {
 uint16_t ii, total_len, len;
 uint8_t* p;
 bool is_overflow = false;

 len = sizeof(BT_HDR) + L2CAP_MIN_OFFSET + mtu;
 BT_HDR* p_buf = (BT_HDR*)osi_calloc(len); // [0]
 p_buf->offset = L2CAP_MIN_OFFSET;
 p = (uint8_t*)(p_buf + 1) + p_buf->offset;

Declares length variables as short unsigned int

0. Allocate a buffer large enough to hold MTU
There is a vulnerability here too (CVE-2023-35673) but that's another story

■

■

■

14

The Bug
Appending a value to the reply buffer

 total_len = (p_buf->len + p_rsp->attr_value.len); // [1]
 if (p_cmd->multi_req.variable_len) {
 total_len += 2; // [2]
 }
 if (total_len > mtu) {
 /* just send the partial response for the overflow case */
 len = p_rsp->attr_value.len - (total_len - mtu); // [3]

 [...]
 memcpy(p, p_rsp->attr_value.value, len); // [4]

1. Compute the space required to append the attribute (total_len)

2. Add 2 to encode the attribute's length

3. Compute the length to append, but forgets to account for the 2-bytes from [2]
Can set len to -1 or -2 (as an unsigned short integer)

4. Huge memcpy of ~ 64 KB (0xfffe-0xffff)

■

■

15

The Bug

Causes a massive heap overflow of ~ 64 KB

Source: heap buffer of ~ 600 bytes of GATT attribute (not controlled by the
attacker)

Can be partially controlled post-pairing by setting GATT attributes

Destination: Heap buffer with controllable size, depending on the MTU
configuration

A bit messy, but good enough for RCE !

■

■

■

■

■

16

The Bug

17

Exploitation Primitives

18

Exploitation Primitives
Persistent Data Allocation

Heap spraying in Fluoride

We need to control the heap layout
Put some controlled data in the source buffer

Shape the destination heap

But there are virtually no persistent allocation in Fluoride

Packet buffers are typically freed upon transmission to the controller

Solution

Force packet allocations to become persistent

■

■

■

■

■

■

19

Exploitation Primitives
Persistent Data Allocation

ACL Congestion

Control-flow feature offered by the Bluetooth specification
To avoid Bluetooth Controller's memory exhaustion

Easy to toggle on Cypress Bluetooth Controllers
A vendor-specific HCI command allows us to simulate ACL congestion

A peer under congestion can still send messages to the remote peer

■

■

■

■

■

20

Exploitation Primitives
Persistent Data Allocation

I can't RX
now

Cmd Cmd Cmd Cmd

Reply

Handling

Attacker

Fluoride

21

Exploitation Primitives
Persistent Data Allocation

ACL Congestion

Fluoride gracefuly handles ACL congestion

Messages are processed and responses are inserted into a queue

Quota limits message queuing during congestion
But there is no quota on the signaling channel

All pending messages are freed when the connection is closed

■

■

■

■

■

22

Exploitation Primitives
Controlled Data Allocation

Invalid L2CAP config requests
Rejected options are sent back to the peer (CONFIG REJ messages)

Allocations of controlled size and data

void l2cu_send_peer_config_rej(tL2C_CCB* p_ccb, uint8_t* p_data,
 uint16_t data_len, uint16_t rej_len) {
 uint16_t len, cfg_len, buf_space, len1;
 uint8_t *p, *p_hci_len, *p_data_end;
 uint8_t cfg_code;

 /* ... */

 len = BT_HDR_SIZE + HCI_DATA_PREAMBLE_SIZE + L2CAP_PKT_OVERHEAD +
 L2CAP_CMD_OVERHEAD + L2CAP_CONFIG_RSP_LEN;

 BT_HDR* p_buf = (BT_HDR*)osi_malloc(len + rej_len);

 /* ... */
}

■

■

■

23

Exploitation Primitives
Heap shaping primitives

More shaping primitives

Allocations that can be allocated / freed on demand

Useful objects to build read / write primitives

Enhanced Retransmission Mode (ERTM)

Reliable transport over L2CAP: Sequence numbering, ack, retransmission

Two ways to force persistent allocations:
Start transmission with seq_tx = 1

→ Since seq_tx = 0 is missing, the peer holds all subsequent messages in memory

Controlled size + Controlled data

Do not acknowledge incoming messages

■

■

■

■

■

■

■

■

24

Exploitation Primitives
Persistent Data Allocation

Enhanced Retransmission Mode (ERTM) - Limitations

Quota
ERTM messages limited by a quota

UP to 10 messages per L2CAP channel

Authenticated channels
ERTM is supported by a subset of L2CAP channels (GAP, AVCTP)

Authentication is required on all ERTM-enabled channels

■

■

■

■

25

Exploitation Primitives
Read and Write Primitives

Bluetooth packets in Fluoride

Simple data structure
len : Length of data

offset : Position of the data

No pointer → Easy to forge

 typedef struct {
 uint16_t event;
 uint16_t len;
 uint16_t offset;
 uint16_t layer_specific;
 uint8_t data[];
 } BT_HDR;

■

■

■

■

26

Exploitation Primitives
Read and Write Primitives

Relative Read Primitive

1. Force Fluoride to send an ERTM fragment

2. Corrupt the pending fragment
→ Alter len and offset fields

3. Request its retransmission
→ Leak up to 64 KB of heap data

■

■

27

Exploitation Primitives
Read and Write Primitives

Forcing an ERTM transmission

AVCTP browsing channel is a good candidate
Supports ERTM mode

GET_FOLDER_ITEMS request:
Request metadata of a music playlist (song name, artist name, etc.)

Select metadata's attributes → Force a response message of a controlled size (same bin
as vulnerable object)

■

■

■

■

■

28

Exploitation Primitives
Read and Write Primitives

Relative Write Primitive

1. Send an ERTM fragment

2. Corrupt it to control offset and len
3. Send next fragment

→ Subsequent fragments are copied using len and offset 's
BT_HDR fields:

memcpy(((uint8_t*)(p_fcrb->p_rx_sdu + 1)) +
 p_fcrb->p_rx_sdu->offset +
 p_fcrb->p_rx_sdu->len,
 p, p_buf->len);

p_fcrb->p_rx_sdu->len += p_buf->len;

■

29

Exploitation Primitives
Code Execution

Target Object

Fluoride stack uses plenty of callback objects (from
libchrome)

Multiple function pointers

Target Callback

The SDP discovery callback is a good candidate

(Most of) Callback's arguments embedded in the
object

Callback allocated while establishing an AVRCP conn.

Callback triggered when closing the related SDP conn.

■

■

■

■

■

■
30

Code Execution on Jemalloc Devices

31

Code Execution on Jemalloc Devices
Heap Shaping

Heap Shaping Strategy

1. Enable ACL congestion.

2. Spray multiple CONFIG REJ messages

3. Interleave ERTM message allocations during the spray
ERTM allocations are used to create "holes" in the heap

4. Disable ACL congestion
CONFIG REJ allocations are freed

5. Free the ERTM allocations
ERTM allocations are reused by the GATT-related allocations

■

■

■

32

Code Execution on Jemalloc Devices
Heap Shaping - Source

33

Code Execution on Jemalloc Devices
Heap Shaping - Dest

Spray Multiple CONFIG REJ messages

Create placeholders for READER and WRITER objects
With ERTM messages sent on a GAP channel

Create placeholder for vulnerable object
With ERTM message sent on a second GAP channel

Close first GAP channel

Allocate WRITER and READER objects

Close second GAP channel

Trigger Overflow

Allocate callback object

■

■

■

■

■

■

■

■

■

■

34

Code Execution on Jemalloc Devices
Exploitation Scenario

1. Shape the heap (src & dst)

2. Trigger overflow and corrupt READER & WRITER
objects

3. Allocate the SDP Discovery Callback (EXECUTOR
object)

4. Request the retransmission of the altered packet

5. Leak the content of the callback

6. Rewrite the content of the callback

7. Trigger the callback

35

Code Execution on Jemalloc Devices
Code Execution

Arguments Control

3 argument of SdpCb callback not controlled
→ call an intermediate function: gadget function

uint64_t gadget(gadget_t *obj)
{
 int64_t v1;
 uint8_t *v2;
 uint64_t *v3;

 v1 = obj->field_28;
 v2 = obj->field_20;
 v3 = (obj->field_30 + (v1 >> 1));
 if ((v1 & 1) != 0)
 v2 = *&v2[*v3];
 return (v2)(v3, obj->field_38, obj->field_40, obj->field_44, obj->field_4c);
}

■ rd

■

36

Code Execution on Jemalloc Devices
Code Execution

Multiple Function Calls

Call to mprotect + jump to shellcode

void list_clear(list_t* list) {
 CHECK(list != NULL);
 for (list_node_t* node = list->head; node;)
 node = list_free_node_(list, node);
 list->head = NULL;
 list->tail = NULL;
 list->length = 0;
}

static list_node_t* list_free_node_(list_t* list, list_node_t* node) {
 CHECK(list != NULL);
 CHECK(node != NULL);

 list_node_t* next = node->next;

 if (list->free_cb) list->free_cb(node->data);
 list->allocator->free(node);
 --list->length;

 return next;
}

Inject a fake list object
→ Require controlled data at a known address

■

■

■

37

Code Execution on Jemalloc Devices
Code Execution

Controlled Data at Known Address

Leak the heap pointer of the SDP discovery callback
The callback has a reference to a 0x1010 bytes object

Spray objects of the same size (with controlled data)
→ Initiate spray right after the callback allocation

■

■

■

■

38

Code Execution on Jemalloc Devices
Code Execution

gadget → call list_clear(list)

1. list->free_cb(node->data) → gadget →
syscall(NR_mprotect)

2. list->allocator->free(node) → gadget → shellcode

■

39

Demo

40

Code Execution on Scudo Devices

41

Code Execution on Scudo Devices
Scudo Allocator

Overview

Hardened security allocator

Primary allocator: serves small allocations (< 0x10000 bytes)

Building blocks

Scudo organizes memory into regions

A region is dedicated to allocations of a specific size class (class id)

Each region is sandwiched between two guard pages

A region is divided into memory blocks
A block consists of:

16 bytes of metadata

Memory chunk: actual memory returned to the program when calling malloc

■

■

■

■

■

■

■

■

■

42

Code Execution on Scudo Devices
Scudo Allocator

Memory allocation

Pick a chunk from the thread-local cache

Refill cache if no available chunks from the global freelist
Pull a TransferBatch (group of pre-allocated chunks)

Populate the freelist with a group of TransferBatches :
Allocate memory from region

Split memory into individual blocks

Shuffle memory blocks

Group memory blocks into TransferBatches

■

■

■

■

■

■

■

■

43

Code Execution on Scudo Devices
Scudo Allocator - Mitigations

Memory Blocks Shuffling

Applied per batch of memory blocks rather than the entire region

Number of randomized blocks depends on the class size
N = 52 (4 * 13) for allocations smaller than 0x350 bytes

How to make the target object reachable from the vulnerable object during the
overflow?

→ Insert N intermediate objects between the vulnerable object and the target object

■

■

■

■

■

44

Code Execution on Scudo Devices
Scudo Allocator - Mitigations

Checksum verification

Memory chunks prefixed by metadata including a checksum

Checksum verified when a chunk is freed

Program aborts if the checksum is corrupted

→ Overflow on freed chunks or on persistent allocations

■

■

■

■

45

Code Execution on Scudo Devices
Exploitation Strategy

The Need of a New Exploitation Scenario

Memory shuffling issue
No relative write primitive

Expects the callback at a fixed offset

Solution

Trigger overflow twice!!
1. Overwrite a READER object → Memory Leak

2. Overwrite a callback object (EXECUTOR) → Code Execution

... And survive to a 64 KB overflow in between

■

■

■

■

46

Code Execution on Scudo Devices
Heap Shaping

47

Code Execution on Scudo Devices
Memory Leak

The SDP Discovery Callback is rarely present
in the leaked heap data

However, a second callback object was
consistently observed in the leaked data

The Capture Callback :
Log HCI packets

Heap reference

Multiple function pointers

■

■

■

■

■

■

48

Code Execution on Scudo Devices
Code Execution

Corrupt the SDP Discovery Callback

Memory chunk shuffling makes it hard to
rewrite reliably all the fields of the callback
object (alignement issue)

Use a pivot gadget → Require overwriting
only 2 specific fields:

LDR X0, [X0]
MOV W8, W1
MOV W1, W2
MOV W2, W8
LDR X3, [X0,#8]
BR X3

■

■

■

49

Code Execution on Scudo Devices
Post Exploitation

Shellcode

Control channel implemented over Bluetooth
Can receive & send Bluetooth frames

Expose a simple command handler
Run shell command, upload file, etc.

Register a signal handler to catch SIGSEGV signals
Keep Bluetooth process in a state of clinical death

■

■

■

■

■

■

50

Conclusion

51

Conclusion
Conclusion

CVE-2023-40129
Critical vulnerability in the Bluetooth stack

No user interaction

No authentication

Non-trivial to exploit

2 Exploits
Remote code execution on Android devices

Successfully tested on Xiaomi 12T (Jemalloc) & Samsung A54 (Scudo)

Reliability
Bluetooth process crashes and silently reboots in case of a failed attempt

Retry !! (in a loop)

Estimated Time of Shell (ETS): ~2mn (Jemalloc), ~5mn (Scudo)

■

■

■

■

■

■

■

■

■

52

Conclusion
Conclusion

The Gabledorsche Stack (GD)

Introduced in Android 12, default stack in Android 13

Bluetooth stack rewrite in Rust (work in progress)

Exploit still functional with GD enabled
Only low-level layers have been rewritten as of late 2023

■

■

■

■

53

References
References

References

BlueBorne
Ben Seri, Gregory Vishnepolsky (Armis Labs)

0-click RCE on the IVI component: Pwn2Own Automotive Edition
Mikhail Evdokimov (PCAutomotive) - Hexacon'24

Fighting Cavities: Securing Android Bluetooth by Red Teaming
Jeong Wook Oh, Rishika Hooda and Xuan Xing (Google) - OffensiveCon'25

Acknowledgement

Kevin Denis aka 0xmitsurugi

■

■

■

■

■

■

■

54

https://www.linkedin.com/company/synacktiv

https://twitter.com/synacktiv

https://synacktiv.com

https://www.linkedin.com/company/synacktiv
https://twitter.com/synacktiv
https://synacktiv.com/

