
A journey of fuzzing Nvidia graphic driver
leading to LPE exploitation

14th & 15th of October 2022

Thierry Doré

https://www.quarkslab.com/
https://www.quarkslab.com/

Motivation

● Two fuzzing projects released in 2021: WTF & Rewind

● Both offer to easily target kernel components

● Wanted to get familiar with both of them

● Needed a target

● Tried various victims candidates

● Decided to go for the graphical driver developed by Nvidia

Introduction

2/50

Why Nvidia Graphic Driver?

● Simple entry point...

NTSTATUS DxgkddiEscape(
 IN_CONST_HANDLE hAdapter,
 IN_CONST_PDXGKARG_ESCAPE pEscape
)

● With an interesting attack surface

Introduction

3/50

Previous Works

● Attacking the Windows NVIDIA Driver

Blogpost 2017, Project Zero

● Evolutionary Kernel Fuzzing

BlackHat 2017, Richard Johnson

● Direct X – Direct way to Microsoft Windows Kernel

Zeronights 2011, Nikita Tarakanov

Existing research

4/50

https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://www.fuzzing.io/Presentations/Evolutionary%20Kernel%20Fuzzing-BH2017-rjohnson-FINAL.pdf
https://repo.zenk-security.com/Conferences/ZeroNights/11-Tarakanov.pdf

WTF

● By 0vercl0k
● https://github.com/0vercl0k/wtf

Rewind

● By Erynian
● https://github.com/quarkslab/rewind

● Both use Hyper-V, BochsCPU and

KVM backend

Snapshot Fuzzing

Snapshot Fuzzing

5/50

https://github.com/0vercl0k/wtf
https://github.com/quarkslab/rewind

DxgkDdiEscape Interface

NTSTATUS DxgkddiEscape(
 IN_CONST_HANDLE hAdapter,
 IN_CONST_PDXGKARG_ESCAPE pEscape
)

● Entry point arguments

● hAdapter: adapter handle

● pEscape: documented structure

● Contains the message sent to the interface (pPrivateDriverData)

● The format is constructor specific!

DxgkDdiEscape

6/50

DxgkDdiEscape Escape Structure

typedef struct _DXGKARG_ESCAPE {
 [in] HANDLE hDevice;
 [in] D3DDDI_ESCAPEFLAGS Flags;
 [in/out] VOID *pPrivateDriverData;
 [in/out] UINT PrivateDriverDataSize;
 [in] HANDLE hContext;
 HANDLE hKmdProcessHandle;
} DXGKARG_ESCAPE;

● The handles are optional except for hDevice

● The command message is constructor dependant

DxgkDdiEscape

7/50

First Fuzzing Iteration

Corpus Generation

● Record the command messages sent to the graphic driver
● Generate activities using a benchmarking tool

Result

● Barely 40% of the driver handlers covered

We have to build a better corpus

DxgkDdiEscape

8/50

Corpus Generation

DxgkDdiEscape

● Starts with a generic header

● Followed by the actual content

● Specific format for each functionality

// sizeof(NvPrivateDataHeader) == 0x10
struct NvPrivateDataHeader {
 DWORD magic_tag;
 WORD major_version;
 WORD minor_version;
 DWORD private_data_size;
 DWORD caller_tag;
}

struct NvPrivateData {
 UINT EscapeCode;
 ...
}

Private Buffer Format

Escape Buffer Validation

10/50

Driver Architecture

Escape Buffer Validation

11/50

Generic Attribute Validation

typedef struct _NvEscapeCodeInfo {
 UINT EscapeCode;
 UINT Size;
 BYTE Unk_2[0x8];
 UINT AdminPrivRequired;
 UINT Flags_1;
 ...
 PVOID ValidationFunction;
} NvEscapeCodeInfo;

● The Flag_1 value gives information about the handle(s) to provide

● 0x1: A device handle is required

● 0x2: Device and context handles are required

Input Format

12/50

Specific Message Callbacks

● Callbacks may give interesting information about the format

bool validation_function_1000151(DXGKARG_ESCAPE Escape, /* ... */) {
 PrivateData1000151 *msg = Escape->pPrivateDriverData;
 if (RtlCompareMemory(msg->guid_1, GUID_E7A07B48, sizeof(GUID)) ||
 RtlCompareMemory(msg->guid_2, GUID_7F03FC51, sizeof(GUID)) ||
 RtlCompareMemory(msg->guid_3, GUID_C50F93EF, sizeof(GUID))) {
 return true;
 }
 return false;
}

Input Format

13/50

● IDA scripting

● Parsing NvEscapeCodeInfo structures

to generate message header

Inputs Generation

Input Generation

14/50

● IDA scripting

● Parsing NvEscapeCodeInfo structures

to generate message header

● Dynamic Symbolic Execution

● Generate inputs that pass the

validation

Inputs Generation

● Triton - https://github.com/JonathanSalwan/Triton
● Dynamic binary analysis library with Python bindings

● Allows to easily cover all the edges of a function

Input Generation

15/50

https://github.com/JonathanSalwan/Triton

Inputs Generation

● Most of the time, only the first argument is used

● Both DXGKARG_ESCAPE.Flags and DXGKARG_ESCAPE.PrivateDataBuffer are

symbolized

● Cover all the edges of the function

● For each jump instruction, we look for a symbolized value that inverts it

{'isTaken': False,
 'srcAddr': 5382793397, 'dstAddr': 5382793426,
 'constraint': (((~(ref_724) & 0x1) & (~(ref_728) & 0x1)) == 0x1)}

New inputs: {52: SymVar_52:8 = 0x0, 53: SymVar_53:8 = 0x0, 55: SymVar_55:8 = 0x4,
 54: SymVar_54:8 = 0x0}

Input Generation

16/50

Inputs Generation

● At the end of the function

● Try to resolve the symbolic value of rax with it equal to TRUE as a constraint

rax = (((((((0x1 == 0x1) and not (((~(ref_724) & 0x1) & (~(ref_728) & 0x1)) == 0x1))
 and not (((~(ref_733) & 0x1) & (~(ref_737) & 0x1)) == 0x1))
 and not (((~(ref_742) & 0x1) & (~(ref_746) & 0x1)) == 0x1))
 and not (((~(ref_751) & 0x1) & (~(ref_755) & 0x1)) == 0x1))
 and not (ref_760 == 0x0)) and (0x1 == 0x1))

Valid escape buffer:
 ...
 00000040: 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00
 00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 ...

Input Generation

17/50

● Input generated by the IDA script

Input Generation with DSE

18/50

● Input generated by the IDA script

Input Generation with DSE

19/50

● First valid file generated with DSE

Input Generation with DSE

20/50

● Second valid file generated with DSE

Input Generation with DSE

21/50

● Third valid file generated with DSE

Input Generation with DSE

22/50

New Corpus and Coverage

● Coverage with the new corpus: 40% -> 80%

Limitation

● Some callbacks access objects in memory and cannot be emulated
● Need a way to link the script with the memory dump

Input Generation with DSE

23/50

● Quite simple harness

● Implementation of 2 functions:

● Init: setup stop addresses

● InsertTestcase: called at every

iteration

● Allows to set up the test case files

We remove all the mutation strategies in WTF that
could impact the buffer size

Fuzzing Harness

● Discards invalid buffers

● When important data (MagicCode, size, etc.) is corrupted

Input Generation with DSE

24/50

Fuzzing Results

Input Generation with DSE

Identified Bugs

Fuzzing Results

26/50

0x100006b: Out of Bounds Read

● Offset read without any check and used in a memory copy

uint32_t offset = EscapeBuffer->Offset;
data_size = 0x2FC - offset;
if (data_size > 0x1DC) {
 data_size = 0x1DC;
}
src_ptr = DataSectionArray + offset;
memcpy(EscapeBuffer->OutputData, src_ptr, data_size);

● Allows to copy 476 bytes after an array stored in the .data section

● Function pointer and stack cookie present in this section

● Can help to bypass KASLR or to exploit a stack buffer overflow (if any)

Fuzzing Results

27/50

0x1000083: Out of Bounds Write

● Access to an array located in the Adapter object with an untrusted index

● 32-bit value retrieved from the private escape buffer

uint8_t oob_write(void *p_adapter, /*...*/, uint32_t val_3, uint32_t index) {
 // ...
 if(val_3 & 0x3000) {
 pAdapter->UnkByte_1 = val_1;
 pAdapter->UnkByte_2 = val_2;
 pAdapter->ArrayOffset4E94[index] = val_3;
 }
 // ...
}

Fuzzing Results

28/50

0x1000083: Limitations

● Allows to write a partially controlled value in the 4GB of memory after the array

stored in the Adapter object

● Presence of an annoying cache
● Registration of the Userland process PID

● Vulnerable code skipped if the same process calls the escape feature twice

● No simple way to remove the PID from the cache without administrative rights

● Create a new process each time we want to corrupt

● Some limitation on the corrupted value
● Setting the 12th and 13th bits changes the execution path

Exploitation

29/50

● Several objects can be corrupted

● Gaining a R/W primitive is possible

● But no CFG protection

● Corrupting pointers is easier

● Corruption of 32-bit at a time

● Need to trigger the bug twice

● Choose something not heavily used by

the driver

Adapter Object Layout

> !pool ffff9d0f220eb000
ffff9d0f220eb000 : large page allocation, tag is NvDI, size is 0x14000 bytes

Exploitation - What to Corrupt?

30/50

Tracing Memory Access

● Leverage the fuzzer corpus to follow memory accesses and find our target

● Bochscpu allows to easily add callbacks on the execution

● BOCHSCPU_HOOK_MEM_EXECUTE

● BOCHSCPU_HOOK_MEM_READ

● BOCHSCPU_HOOK_MEM_RW

● BOCHSCPU_HOOK_MEM_WRITE

● bochscpu_backend.cc modification to trace memory accesses

Exploitation - What to Corrupt?

31/50

Finding a Pointer to Corrupt

● Looking for a specific pattern:

● 8-byte read access in the Adapter object memory that can be controlled

● Followed by another access to the value that has been read previously

Read 0xffff8083c4535000 at offset: 0x9e08 (pc: 0xfffff803866678bf)
Access 0xffff8083c4535000 at 0xfffff80387174019

Read 0xffff8083c5d30fe0 at offset: 0x5bf0 (pc: 0xfffff80387173f5c)
Access 0xffff8083c5d30fe0 at 0xfffff80387173f63

Read 0xffff8083c2022000 at offset: 0x6cf0 (pc: 0xfffff803871009d0)
Access 0xffff8083c2022000 at 0xfffff803873a852d

Exploitation - What to Corrupt?

32/50

Exploitation Global View

33/50

● Need to restore the corrupted object

● Cannot leak the pointer before

overwriting it :(

● Need to reconstruct it

● Vtable pointer retrievable in an easy

way

● Driver base address is known

Restoring the Object

● Other fields require a leak of the Adapter object address

Cleaning Phase

34/50

Transforming the Corruption into a Memory Leak

● Some Nvidia requests return data to the user

● Leverage the Adapter object corruption to leak memory

● Bypass the validation by modifying the object before the data is copied in the

output buffer

● Reuse of the memory tracing capability offered by Bochscpu backend

● Record of every read access to the object followed by a copy in the output buffer

Cleaning Phase

35/50

Transforming the Corruption into a Memory Leak

We are looking for this kind of pattern:

● Read memory access from the escape buffer
● we can control something

● Read memory in the controlled part of the Adapter object
● Write memory access in the escape buffer

● something is returned to the user

Adapter Read 0x00000004 to GVA 0xffff8083c20575d0 (Offset: 0x135d0)

PrivateBuffer Read 0x00000002 to GVA 0xffffd70b83110030 at 0xfffff803870fa488
PrivateBuffer Read 0x00000002 to GVA 0xffffd70b83110030 at 0xfffff803870fa490

Adapter Read 0x000000009ac31d0a to GVA 0xffff8083c204c9b0 (Offset: 0x89b0)
PrivateBuffer Write 8 bytes to GVA 0xffffd70b83110034 at 0xfffff803870fa4b5

Cleaning Phase

36/50

Transforming the Corruption into a Memory Leak

Cleaning Phase

37/50

Transforming the Corruption into a Memory Leak

Cleaning Phase

38/50

Transforming the Corruption into a Memory Leak

Cleaning Phase

39/50

Transforming the Corruption into a Memory Leak

Cleaning Phase

40/50

Final Exploitation Step

Cleaning Phase

41/50

Final Exploitation Step

Cleaning Phase

42/50

Final Exploitation Step

Cleaning Phase

43/50

Final Exploitation Step

Cleaning Phase

44/50

Final Exploitation Step

Cleaning Phase

45/50

Final Exploitation Step

Cleaning Phase

46/50

Final Exploitation Step

Cleaning Phase

47/50

Demo

0:39 / 0:39

48/50

Timeline

● 3 May 2022: Disclose the vulnerabilities to Nvidia

● 17 May 2022: Notice us that they manage to validate the findings and plan to

release a patch in August

● 2 August 2022: All the bugs disclosed have been patched (CVE‑2022‑31606,

CVE‑2022‑31612, CVE‑2022‑31616, and CVE‑2022‑31617)

Security Bulletin: NVIDIA GPU Display Driver - August 2022

https://nvidia.custhelp.com/app/answers/detail/a_id/5383

Demo

49/50

https://nvidia.custhelp.com/app/answers/detail/a_id/5383

Questions?

https://www.quarkslab.com/
https://www.quarkslab.com/

