
Road to Pwn2Own with a VirtualBox Exploit

EMAIL
creds1337@gmail.com

PRESENTED BY:
Hanseo Kim

KOREAN
ROOKIE

HACKER’S
JOURNEY

00 Introduction

01 Korean Rookies

02 Pwn2Own && Virtualization

03 VirtualBox Virtio-net Out-Of-Bounds

04 VMSVGA Integer Overflow (CVE-2025-53024)

05 Information Leak(ZDI-CAN-27241)

06 Exploit

07 Conclusion

Agenda

About Myself

00/07

Hanseo Kim

Software Engineering Student - Ajou University

Intern at Hspace

Research Interests
 - OS Internals & Virtualization VR, Red Teaming

Team PrisonBreak
Hanseo Kim, Gangmin Kim, Wonjoon Hwang, Sanghoon Lee, Sangwon Oh, Sangbin Kim

Korean Rookies
Rookie Hacker Life in Korea

Student Hackers
Some start in specialized high schools, others at
university. Distinctive clubs at each school and
active exchanges build a vibrant hacking
community.

Bootcamp… Literally
Mandatory military service often creates a research
gap for male students. Assignments in cyber units or
CERT roles can provide relevant experience, but they
rarely substitute for continuous academic progress.

Elite Program
The government-supported program Best Of the
Best (BOB) is one that most students studying
cybersecurity aspire to join.

01/07

BOB?
Government-supported program in Korea

01/07

BOB?

Vulnerability Research

01/07

Security Consulting

Digital Forensic Secure Product Development

Government-supported program in Korea

0-Day Research

BOB?
VR Track

01/07

1-Day Analysis

CTF

OS Internal

ARM, MIPS BrowserKernel

Virtualization

Hardware

CTF

CTF

Web

BOB?
VR Track

01/07

BOB?
Team Project

01/07

Singi Labs
Jeonghoon Shin

Theori
Gwangun Jung

BOB?
Team Project

01/07

Virtualization

Pwn2Own
Virtualization Category

02/07

Virtualization
Type 2 Hypervisor

Type2 HyperVisor S
oftw

ar
e

Guest OS, Kern
el

Host OS

Guest

A Type 2 hypervisor operates like an
application on top of the host operating
system, managing virtual machines
within that environment.

02/07

Virtualization
VM Escape

Type2 HyperVisor S
oftw

ar
e

Guest OS, Kern
el

Host OS

GuestVM Escape is a vulnerability from
indirect communication between a
guest OS and a Type-2 hypervisor.

Impact: Guest-only privileges can
lead to host RCE, DoS, or file
read/write.

Attack Vector: Bugs in input
handling, memory/integer overflows.

02/07

Attack Surfaces
Type 2 Hypervisor

Reported Vulnerabilities by Attack Vector
(2020–2024)

Over 90% of vulnerabilities are found in
virtual devices.

Virtual Device Network

Virtual Printing Tool Services

Memory Management etc

Virt
ual

Dev
ice

Netw
ork

Virt
ual

Prin
ting

To
ol S

erv
ice

s

Mem
ory

Man
ag

em
en

t etc
0

50

100

150

200

02/07

Virtual devices
Software-emulated device

02/07

Network Graphic Storage

E1000, Virtio-Net SVGA, SVGA3D ... AHCI, Vitio-BLK ...

Guest

PIO, MMIO
[Port / Memory-mapped] device access

02/07

Hypervisor SoftwareMMIO, PIO

Virtual Device
Register Register Register

Host

Guest

Hypervisor SoftwareMMIO, PIO

Virtual Device
Register Register Register

VT-X

PIO, MMIO
[Port / Memory-mapped] device access

02/07

VMExit

Host

VirtIO
Paravirtualized I/O Interface

02/07

Guest

Guest Kernel

VirtQueue

Hypervisor Software

Host

Guest

Guest Kernel

VirtQueue

Hypervisor SoftwareKick

VirtIO
Paravirtualized I/O Interface

02/07

VMExit

Host

VGA-SVGA
03/07

Graphic Device

Guests can communicate with VGA/SVGA devices in two ways :

1) Simple control: Direct register access via MMIO/PIO
2) Complex graphics: Placing commands in FIFO queue and
sending execution signals via MMIO/PIO

 - DevVGA-SVGA.cpp
 Core VGA/SVGA device structure and
 PIO/MMIO register access handling

 - DevVGA-SVGA-cmd.cpp
 FIFO command interpretation and register-base
 graphics operations

VGA-SVGA
Register Register Register

PIO/MMIO

Guest
FIFO QUEUE

VGA-SVGA
03/07

Register Read/Write Example
If you need functionality to copy a rectangular pixel area within guest VRAM

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
srcX : 100
srcY : 200
width : 300
 . . .

VGA-SVGA Device
SVGA_REG_SYNC

VGA-SVGA
03/07

Guest

PIO/MMIO

Host
VirtualBox

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
ID : 10
srcX : 100
srcY : 200
width : 300
 . . .

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
srcX : 100
srcY : 200
width : 300
 . . .

VGA-SVGA Device
SVGA_REG_SYNC

VGA-SVGA
03/07

Guest

PIO/MMIO

Host
VirtualBox

VMExit

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
ID : 10
srcX : 100
srcY : 200
width : 300
 . . .

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
srcX : 100
srcY : 200
width : 300
 . . .

VGA-SVGA Device
SVGA_REG_SYNC

VGA-SVGA
03/07

Guest

PIO/MMIO

Host
VirtualBox

vmsvgaWritePort

case SVGA_REG_SYNC:
 . . .
 . . .
PDMDevHlpSUPSemEventSignal(pDevIns, pThis-
>svga.hFIFORequestSem);

VMExit

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
ID : 10
srcX : 100
srcY : 200
width : 300
 . . .

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
srcX : 100
srcY : 200
width : 300
 . . .

VGA-SVGA Device
SVGA_REG_SYNC

VGA-SVGA
03/07

Guest

PIO/MMIO

Host
VirtualBox

VMExit

vmsvgaWritePort

case SVGA_REG_SYNC:
 . . .
 . . .
PDMDevHlpSUPSemEventSignal(pDevIns, pThis-
>svga.hFIFORequestSem);

Receive semaphore signal

VMExit

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
ID : 10
srcX : 100
srcY : 200
width : 300
 . . .

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
ID : 10
srcX : 100
srcY : 200
width : 300
 . . .

VGA-SVGA Device
SVGA_REG_SYNC

VGA-SVGA
03/07

Guest

PIO/MMIO

Host
VirtualBox

VMExit

vmsvgaWritePort

case SVGA_REG_SYNC:
 . . .
 . . .
PDMDevHlpSUPSemEventSignal(pDevIns, pThis-
>svga.hFIFORequestSem);

Receive semaphore signal

vmsvgaR3FifoLoop

VMExit

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
srcX : 100
srcY : 200
width : 300
 . . .

VGA-SVGA Device
SVGA_REG_SYNC

VGA-SVGA
03/07

Guest

PIO/MMIO

Host
VirtualBox

VMExit

vmsvgaWritePort

case SVGA_REG_SYNC:
 . . .
 . . .
PDMDevHlpSUPSemEventSignal(pDevIns, pThis-
>svga.hFIFORequestSem);

Receive semaphore signal

vmsvgaR3FifoLoopCheck Fifo Queue

VMExit

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
ID : 10
srcX : 100
srcY : 200
width : 300
 . . .

FIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
srcX : 100
srcY : 200
width : 300
 . . .

VGA-SVGA Device
SVGA_REG_SYNC

VGA-SVGA
03/07

Guest

PIO/MMIO

Host

VMExit

VirtualBox

vmsvgaWritePort

case SVGA_REG_SYNC:
 . . .
 . . .
PDMDevHlpSUPSemEventSignal(pDevIns, pThis-
>svga.hFIFORequestSem);

Receive semaphore signal

case SVGA_CMD_RECT_COPY:
 {
 SVGAFifoCmdRectCopy *pCmd;
 VMSVGAFIFO_GET_CMD_BUFFER_BREAK(pCmd,
SVGAFifoCmdRectCopy, sizeof(*pCmd));
 vmsvgaR3CmdRectCopy(pThis, pThisCC, pCmd);
 break;
 }

vmsvgaR3FifoLoopCheck Fifo QueueFIFO Queue(MMIO region)

CMD : SVGA_CMD_RECT_COPY
ID : 10
srcX : 100
srcY : 200
width : 300
 . . .

CVE-2025-53024
03/07

CVE-2025-53024
03/07

Manipulated uHeight and cbScanline values → crashes
Root cause: OOB reads beyond pbVram boundary
Data inaccessible from guest, but promising lead discovered
Next: Analyze these variables further

CVE-2025-53024
03/07

CVE-2025-53024
03/07

CVE-2025-53024
03/07

0x1000000

CVE-2025-53024
03/07

SrcX, destX, width, srcY, destY, height - these 6 values cannot be larger
than pThis->svga.u32MaxWidth and pThis->svga.u32MaxHeight.

These 2 values are set to 0x800 in the settings.

CVE-2025-53024
03/07

03/07

03/07

03/07

03/07

03/07

pCmd fields are Guest Controllable

03/07

When width and height are appropriately small,
cbPitch can reach VRAM size

03/07

srcY = 0, dstY = 0x1ff, height = 1; srcX = 0, dstX = 0, width = 0x100
pScreen->cBpp = 32, pScreen->cbPitch = 0x800000;

0 0x1ff 1 0x800000 0 0 0x100 40x100000400

03/07

0x100000400 >= 0x100000000
Integer Overflow!

03/07

pDst = pThisCC->pbVRam
pSrc = pThisCC->pbVRam + 0xff800000

 * pbVRam is Guest read/writable Memory *

03/07

[pSrc in pbVRAM && pDst out pbVRAM] → OOB write
[pSrc out pbVRAM && pDst in pbVRAM] → OOB Read

03/07

VirtIO OOB/W
03/07

A structural flaw in the validation logic during
GSO (Generic Segmentation Offload) processing

VirtIO OOB/W
03/07

0x4000check sbHdrsTotal Size

VirtIO OOB/W
03/07

VirtIO OOB/W
03/07

OOB WRITE!

ZDI-CAN-27241
03/07

Unpatched

EXPLOIT
03/07

VirtIO-Net OOB/W + Info Leak Exploit reliability stabilized at 90%+
(Guest Ubuntu + Host Windows)

We were waiting for March
(Pwn2Own 2024 Vancouver was held in March)

Sponsor reserves the right, in its sole discretion,
to allow non-default configurations if the Sponsor deems them

to be in the normal use case of the target under test.

📅 Oracle January 2025 Patch
❌ Our vulnerabilities: NOT FIXED

EXPLOIT
03/07

March was approaching but no Pwn2Own schedule announced
(Rumors suggested it would be held with OffensiveCon)

EXPLOIT
03/07

EXPLOIT
03/07

Pwn2Own 2025 Berlin with OffensiveCon : May

&&

📅 Oracle April 2025 Patch
❌ VirtIO-NET OOB/W : FIXED

&&

Guest OS : RHEL

EXPLOIT
03/07

But still we had VGA R/W vulnerabilities

Found new exploitation objects for RHEL

Successfully stabilized exploit reliability to 90%+

EXPLOIT
03/07

VGA-SVGA OOB R/W Exploit - Heap Spray

Crash occurs: Memory not allocated at pbVRAM+0xffc00000
We need massive heap allocation (Almost 4GB)

EXPLOIT
03/07

VGA-SVGA OOB R/W Exploit - Heap Spray

Exploit Object Requirements
Massive heap allocation capability

Need chunks at ~4GB offset
Chunk size > 0x4000

Avoid LFH guard pages
Reduce heap randomness

/* cPages <= 0x100000 */

/* Guest Control */

0x2000 GMRs × 0x100000 pages → 4GB+ heap allocation

VRAM

EXPLOIT
03/07

VGA-SVGA OOB R/W Exploit - Heap Spray, Information Leak

GMR 1 GMR 2 . . . GMR N GMR N+1

VRAM + 0xff800000

VRAM

EXPLOIT
03/07

VGA-SVGA OOB R/W Exploit - Heap Spray, Information Leak

GMR 1 GMR 2 . . . FREE GMR N+1

VRAM + 0xff800000

VRAM

EXPLOIT
03/07

VGA-SVGA OOB R/W Exploit - Heap Spray, Information Leak

GMR 1 GMR 2 . . . URB GMR N+1

VRAM + 0xff800000

EXPLOIT
VGA-SVGA OOB R/W Exploit - URB

Information Disclosure via VUSBURB:
✓ VboxDD.dll base address
✓ Heap addresses
✓ VRAM & roothub address derivation

EXPLOIT
VGA-SVGA OOB R/W Exploit - URB

linked list structure

EXPLOIT
VGA-SVGA OOB R/W Exploit - URB

Data

Next

Prev

Data

Next

Prev

Data

Next

Prev

EXPLOIT
VGA-SVGA OOB R/W Exploit - URB

Data

Next

Prev

Overwrite Node

Data

Fake Next

Fake Prev

Data

Next

Prev

EXPLOIT
VGA-SVGA OOB R/W Exploit - URB

Data

Next

Prev

Unlink Node

Data

Fake Next

Fake Prev

Data

Next

Prev

Fake PrevFake Next

EXPLOIT
VGA-SVGA OOB R/W Exploit - URB

/* overwrite apDevbyAddr[0x10]
apDevbyAddr[0x10] = vram+0x800000 */

EXPLOIT
VGA-SVGA OOB R/W Exploit - URB

VUSBCTRLEXTRA's pbCur points to the next
read/write address Controlling pbCur enables

AAR & AAW through control pipe

EXPLOIT
VGA-SVGA OOB R/W Exploit - Code Execution

When hSniffer is not NULL,
VUSBSnifferRecordEvent gets called

EXPLOIT
VGA-SVGA OOB R/W Exploit - Code Execution

Overwrite sniffer with guest-accessible address
and set pfnRecordEvent to target function → arbitrary code execution

DEMO
03/07

CONCLUSION
03/07

Due to CFI protection, JOP and ROP remain difficult,
 necessitating better CFI bypass methods for sophisticated attacks

Complex virtualization device implementation continues
 harboring persistent bugs.

Rookies fear complexity but succeed with proper guidance
 Individual growth strengthens entire security community

Thank you

E-mail creds1337@gmail.com

