VHEXACOMN /28

KOREAN

ROOKIE
HACKER'S
JOURNEY

Road to Pwn20wn with a VirtualBox Exploit

EMAIL PRESENTED BY:
creds1337@gmail.com Hanseo Kim

L ¥ s
AL

00 Introduction

o1 Korean Rookies

02 Pwn20wn && Virtualization

03 VirtualBox Virtio-net Out-Of-Bounds
04 VMSVGA Integer Overflow (CVE-2025-53024)
05 Information Leak(ZDI-CAN-27241)
06 Exploit

07

Conclusion

00/07

About Myself

Hanseo Kim

Software Engineering Student - Ajou University
Intern at Hspace

Research Interests
- OS Internals & Virtualization VR, Red Teaming

Team PrisonBreak
Hanseo Kim, Gangmin Kim, Wonjoon Hwang, Sanghoon Lee, Sangwon Oh, Sangbin Kim

Korean Rookies

Rookie Hacker Life in Korea

Student Hackers

Some start in specialized high schools, others at
university. Distinctive clubs at each school and
active exchanges build a vibrant hacking
community.

Bootcamp... Literally

Mandatory military service often creates a research
gap for male students. Assignments in cyber units or
CERT roles can provide relevant experience, but they
rarely substitute for continuous academic progress.

Elite Program

The government-supported program Best Of the
Best (BOB) is one that most students studying
cybersecurity aspire to join.

01/07

01/07

BOB?

Government-supported program in Korea

next up is uh team prison break best of
the best 13th, whatever that means.

01/07

BOB?

Government-supported program in Korea

Vulnerability Research | Security Consulting

Re

Digital Forensic | Secure Product Development

01/07

BOB?

VR Track

01/07

BOB?

VR Track

01/07

BOB?

Team Project

Singi Labs Theori
Jeonghoon Shin Gwangun Jung

01/07

BOB?

Team Project

Virtualization

02/07

Pwn20wn

Virtualization Category

Master of Pwn Eligible for Add-

Target Prize Points on Prize
t Oracle VirtualBox $40,000 4 Yes j
VMware Workstation $80,000 8 Yes
VMware ESX1 $150,000 15 No
Microsoft Hyper-V Client $250,000 25 Yes
Add-on Prize Prize Master of Pwn Points

Escalation of privilege leveraging a
Windows kernel vulnerability on the $50,000 5
host operating system.

Virtualization

Type 2 Hypervisor

A Type 2 hypervisor operates like an
application on top of the host operating

system, managing virtual machines
within that environment.

Virtualization

VM Escape

VM Escape is a vulnerability from
indirect communication between a
guest OS and a Type-2 hypervisor.

e Impact: Guest-only privileges can
lead to host RCE, DoS, or file
read/write.

e Attack Vector: Bugsin input
handling, memory/integer overflows.

02/07

At t aC k s U rf aces Virtual Device @ Network

@ Virtual Printing @ Tool Services

Type 2 Hypervisor @ Memory Management @ etc
200
Reported Vulnerabilities by Attack Vector 150
(2020-2024)
. i : 100
Over 90% of vulnerabilities are found in
virtual devices.
50
0 H D A ... s
Q/A\é” @o& 6&\% é\c‘?’(o 6\@& &
Q S N ¢ 2
> < N NG 30
K\) ’&’b &OO V‘\,bk\
N\ K3
&

02/07

Virtual devices

Software-emulated device

Network

E1000, Virtio-Net SVGA, SVGA3D ... AHCI, Vitio-BLK ...

02/07

PIO, MMIO

[Port / Memory-mapped] device access

Host

MMIO, PIO

Register Register Register

02/07

PIO, MMIO

[Port / Memory-mapped] device access

Host

VMEXit

Vi #

Register Register Register

MMIO, PIO

02/07

virtio

Paravirtualized I/O Interface

Host

02/07

virtio

Paravirtualized I/O Interface

Host

03/07

VGA-SVGA

Graphic Device

Guests can communicate with VGA/SVGA devices in two ways :

1) Simple control: Direct register access via MMIO/PIO
2) Complex graphics: Placing commands in FIFO queue and
sending execution signals via MMIO/PIO

PIO/MMIO
- DevVGA-SVGA.cpp

Core VGA/SVGA device structure and
PIO/MMIOQO register access handling

- DevVGA-SVGA-cmd.cpp Register Register Register
FIFO command interpretation and register-base
graphics operations

03/07

VGA-SVGA

Register Read/Write Example
If you need functionality to copy a rectangular pixel area within guest VRAM

oid wvmsvgaR3RectCopy(PVGASTATECC » VMSVGASCREENOBIECT const

- L -l L 5 -t -t b 3 - = _

if (lwidth || !height)

u
»

cbPixel = RT_ALIGN(pScreen->cBpp, 8) / 8;

cb5canline = pScreen->cbPitch ? pScreen-»cbPitch : width * cbPixel;
*pSrc;

*pDst;

cbRectWidth = width * cbPixel;

uMaxOffset;

uMaxOffset = (RT_MAX(srcY, dstY) + height) * cbScanline + (RT_MAX(srcX, dstX) + width) * cbPixel;
if (uMaxOffset »>=)

Log(("Max offset (%u) too big for framebuffer (%u bytes), ignoring!\n", uMaxOffset,

»

03/07

VGA-SVGA

Host
Guest VirtualBox i«?

PIO/MMIO

03/07

VGA-SVGA

Host
Guest VirtualBox i«?

PIO/MMIO

O T

VGA-SVGA

03/07

Host

Guest

FIFO Queue(MMIO region)

CMD :SVGA_CMD_RECT_COPY
ID:10

srcX:100

srcY:200

width : 300

PIO/MMIOW

VGA-SVGA Device

SVGA _REG SYNC e

vmsvgaWritePort

VirtualBox

N\

case SVGA_REG _SYNC:

>svga.hFIFORequestSem);

PDMDeVvHIpSUPSemEventSignal(pDevins, pThis-

VGA-SVGA

03/07

PIO/MMIO

Guest

Host

W

vmsvgaWritePort

VirtualBox

eceive semaphore signal

N7

case SVGA_REG _SYNC:

>svga.hFIFORequestSem);

PDMDevHIpSUPSemEventSignal(pDevins, pThis-

03/07

VGA-SVGA

Host

Guest VirtualBox

N\

FIFO Queue(MMIO region) vmsvgaR3FifoLoop

CMD :SVGA_CMD_RECT_COPY
ID:10

srcX:100

srcY:200

width : 300

PIO/MMIO v
SVGA _REG_SYNC e

VGA-SVGA Device

vmsvgaWritePort eceive semaphore signal

case SVGA_REG _SYNC:

PDMDeVvHIpSUPSemEventSignal(pDevins, pThis-
>svga.hFIFORequestSem);

03/07

VGA-SVGA

Host

Guest VirtualBox

N\

FIFO Queue(MMIO region) ~P vmsvgaR3FifolLoop

CMD :SVGA_CMD_RECT_COPY
ID:10

srcX:100

srcY:200

width : 300

PIO/MMIO v
SVGA _REG_SYNC e

VGA-SVGA Device

vmsvgaWritePort eceive semaphore signal

case SVGA_REG _SYNC:

PDMDeVvHIpSUPSemEventSignal(pDevins, pThis-
>svga.hFIFORequestSem);

03/07

VGA-SVGA

Host
Guest VirtualBox
) 0 1 _.4’
FIFO Queue(MMIO region) " vmsvgaR3FifoLoop
case SVGA_CMD_RECT_COPY:
. {
CMD: SVGA—C M D—R ECT—CO PY SVGAFifoCmdRectCopy *pCmd;
ID:10 VMSVGAFIFO_GET_CMD_BUFFER_BREAK(pCmd,
. SVGAFifoCmdRectCopy, sizeof (*pCmd));
srcX:100 vmsvgaR3CmdRectCopy(pThis, pThisCC, pCmd);
srcY :200 }break;
width : 300

- vmsvgaWritePort

PIO/MMIO v
SVGA _REG_SYNC Q

VGA-SVGA Device

eceive semaphore signal

case SVGA_REG _SYNC:

PDMDeVvHIpSUPSemEventSignal(pDevins, pThis-
>svga.hFIFORequestSem);

03/07

CVE-2025-53024

N¢ Oracle VM VirtualBox Manager — d *

File Machine Help

9

Tools 2 ‘<L_|—‘ 'Qﬂ_‘.g' W'

New Add Settings Discard Start

. B General B preview
winl0-vm [
|| —

Q) Powered Off) Mame: winl0-vm
Operating System: Windows 10 (54-bit)

%
|
4 olg-vm | B System
Q) Powered Off Base Memory: 4096 MB
Boot Order: Floppy, Optical, Hard Disk
Acceleration: VT-%/AMD-V, Nested
E ol7-vm Faging, Hyper-¥

th) Powered Off Paravirtualization

B Dpisplay

Video Memaory: 128 MB
Graphics Controller: VBoxSVGA
Remaote Desktop Server: Disabled
Recording: Disabled
& Storage

Cantroller: SATA

CVE-2025-53024

'!l‘? Oracle VM VirtualBox Manager

File Machine Help

Tools
Iy
64 winl0-vm [
\E_'-}' Powered Off :j_
64 ol8-vm
L',} Powered Off
64 ol7-vm
) Powered Off

New Add Settings Discard Start
& General

Mame: winlo-vm
Operating System: Windows 10 (54-bit)

i B System

Base Memory: 4096 MB

Boot Order: Floppy, Optical, Hard Disk

Acceleration: VT-%/AMD-V, Nested
Faging, Hyper-V
Paravirtualization

I Display

Video Memaory: 128 MB
Graphics Controller: VBoxSVGA
Remaote Desktop Server: Disabled
Recording: Disabled
& Storage

Cantroller: SATA

B preview

Manipulated uHeight and cbScanline values > crashes
Root cause: OOB reads beyond pbVram boundary

v

ey,

Data inaccessible from guest, but promising lead discovered
Next: Analyze these variables further

03/07

03/07

CVE-2025-53024

static void vmsvgaR3RectCopy(PVGASTATECC pThisCC, VMSVGASCREENOBIJECT const *pScreen, uint32 t srcX, uint32 t srcY,
uint32_t dstX, uint32_t dstY, uint32_t width, uint32 t height, unsigned cbFrameBuffer)

-

uint32 t const cbPixel = RT_ALIGN(pScreen->cBpp, 8) / 8;

const cbScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

_t
_t

3
L=

uMaxOffset = (RT_MAX(srcY, dstY) + height) * cbScanline + (RT_MAX(srcX, dstX) + width) * cbPixel;
if (uMaxOffset »= cbFrameBuffer)

I
L

Log(("Max offset (%u) too big for framebuffer (%u bytes), ignoring!\n", uMaxOffset, cbFrameBuffer));
return,;

03/07

CVE-2025-53024

void vmsvgaR3RectCopy(PVGASTATECC pThisCC, VMSVGASCREENOBIJIECT const *pScreen, uint32 t srcX, uint32 t srcy,
uint32_t dstX, uint32_t dstY, uint32_t width, uint32 t height, signed cbFrameBuffer)

cbPixel = RT_ALIGN(pScreen->cBpp, 8) / 8;
cbScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

uMaxOffset = (RT_MAX(srcY, dstY) + height) * cbScanline + (RT_MAX(srcX, dstX) + width) * cbPixel;
if (uMaxOffset »= cbFrameBuffer)

I
L

Log(("Max offset (%u) too big for framebuffer (%u bytes), ignoring!\n", uMaxOffset, cbFrameBuffer));
return,;

03/07

CVE-2025-53024

ﬂ' redhat95 - Settings

vmsvgaR3RectCopy (PVGASTATE
Basic Expert

D General Display

Screen i
System = Recording

cbPixel = RT_ALIGI

: — Video Memory:
cbScanline = pScre Display M Y

Storage Monitor Count:
uMaxOffset = (RT_MAX(srcY, dstyY
if (uMaxOffset >= cbFrameBuffer) Audio
r Scale Factor:

I‘-
Log(("Max offset (%u) too bij Network

return,

Serial Ports Graphics Controller: VMSVGA ~

e Extended Features: Enable 3D Acceleration

03/07

CVE-2025-53024

SrcX, destX, width, srcY, destY, height - these 6 values cannot be larger
than pThis->svga.u32MaxWidth and pThis->svga.u32MaxHeight.

These 2 values are set to Ox800 in the settings.

void vmsvgaR3CmdRectCopy(PVGASTATE pThis, PVGASTATECC pThisCC, SVGAFifoCmdRectCopy const *pCmd)

- =

ASSERT_GUEST_RETURN_VOID(pCmd->srcX < pThis->svga.u32MaxWidth);
ASSERT_GUEST_RETURN_VOID(pCmd->destX < pThis->svga.u32MaxWidth);
ASSERT_GUEST_RETURN_VOID(pCmd->width < pThis->svga.u32MaxWidth);
ASSERT_GUEST_RETURN_VOID(pCmd->srcY < pThis->svga.u32MaxHeight);
ASSERT_GUEST_RETURN_VOID(pCmd->destY < pThis->svga.u32MaxHeight);
ASSERT_GUEST_RETURN_VOID(pCmd->height < pThis->svga.u32MaxHeight);

vmsvgaR3RectCopy(pThisCC, pScreen, pCmd->srcX, pCmd->srcY, pCmd->destX, pCmd->destY,
pCmd->width, pCmd->height, pThis->vram_size);
vmsvgaR3UpdateScreen(pThisCC, pScreen, pCmd->destX, pCmd->destY, pCmd->width, pCmd->height);

03/07

CVE-2025-53024

void vmsvgaR3RectCopy(PVGASTATECC pThisCC, VMSVGASCREENOBIJIECT const *pScreen, uint32 t srcX, uint32 t srcy,
uint32_t dstX, uint32_t dstY, uint32_t width, uint32 t height, signed cbFrameBuffer)

cbPixel = RT_ALIGN(pScreen->cBpp, 8) / 8;
cbScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

uMaxOffset = (RT_MAX(srcY, dstY) + height) * cbScanline + (RT_MAX(srcX, dstX) + width) * cbPixel;
if (uMaxOffset »= cbFrameBuffer)

I
L

Log(("Max offset (%u) too big for framebuffer (%u bytes), ignoring!\n", uMaxOffset, cbFrameBuffer));
return,;

uint32 t const «cbPixel = RT_ALIGN(pScreen->cBpp, 8) / 8;
uint32_t const cbScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

void vmsvgaR3CmdDefineScreen(PVGASTATE pThis, PVGASTATECC pThisCC, SVGAFifoCmdDefineScreen const *pCmd)

- = =

uint32 t const idScreen = pCmd->screen.id;
ASSERT_GUEST_RETURN_VOID(idScreen < RT_ELEMENTS(pSvgaR3State->aScreens));
uint32_t const ulWidth = pCmd->screen.size.width;
ASSERT_GUEST_RETURN_VOID(uWidth <= pThis->svga.u32MaxWidth);

uint32_t const uHeight = pCmd->screen.size.height;
ASSERT_GUEST_RETURN_VOID(uHeight <= pThis->svga.u32MaxHeight);

uint32_t const cbWidth = uWidth * ((32 + 7) / 8); @todo

uint32 t const cbPitch = pCmd->screen.backingStore.pitch ? pCmd->screen.backingStore.pitch : cbWidth;
ASSERT_GUEST_RETURN_VOID(cbWidth <= cbPitch);

uint32 t const uScreenOffset = pCmd->screen.backingStore.ptr.offset;
ASSERT_GUEST_RETURN_VOID(uScreenOffset < pThis->vram_size);

uint32 t const cbVram = pThis->vram_size - uScreenOffset;

ASSERT_GUEST_RETURN_VOID(uHeight == © && cbPitch ==
|| (cbPitch > @ && uHeight <= cbVram / cbPitch));

if (!RT_BOOL(pCmd->screen.flags & (SVGA_SCREEN_DEACTIVATE | SVGA_SCREEN_BLANKING)))

- = =

pScreen->cWidth uWidth;
pScreen->cHeight = uHeight;
pScreen->offVRAM = uScreenOffset;

pScreen->cbPitch cbPitch;
pScreen->cBpp 32,

uint32 t const «cbPixel = RT_ALIGN(pScreen->cBpp, 8) / 8;
uint32_t const cbScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

void vmsvgaR3CmdDefineScreen(PVGASTATE pThis, PVGASTATECC pThisCC, SVGAFifoCmdDefineScreen const *pCmd)

- = =

uint32 t const idScreen = pCmd->screen.id;
ASSERT_GUEST_RETURN_VOID(idScreen < RT_ELEMENTS(pSvgaR3State->aScreens));
uint32_t const ulWidth = pCmd->screen.size.width;
ASSERT_GUEST_RETURN_VOID(uWidth <= pThis->svga.u32MaxWidth);

uint32_t const uHeight = pCmd->screen.size.height;
ASSERT_GUEST_RETURN_VOID(uHeight <= pThis->svga.u32MaxHeight);

uint32_t const cbWidth = uWidth * ((32 + 7) / 8); @todo

uint32 t const cbPitch = pCmd->screen.backingStore.pitch ? pCmd->screen.backingStore.pitch : cbWidth;
ASSERT_GUEST_RETURN_VOID(cbWidth <= cbPitch);

uint32 t const uScreenOffset = pCmd->screen.backingStore.ptr.offset;
ASSERT_GUEST_RETURN_VOID(uScreenOffset < pThis->vram_size);

uint32 t const cbVram = pThis->vram_size - uScreenOffset;

ASSERT_GUEST_RETURN_VOID(uHeight == © && cbPitch ==
|| (cbPitch > @ && uHeight <= cbVram / cbPitch));

if (!RT_BOOL(pCmd->screen.flags & (SVGA_SCREEN_DEACTIVATE | SVGA_SCREEN_BLANKING)))

- = =

pScreen->cWidth uWidth;
pScreen->cHeight = uHeight;
pScreen->offVRAM = uScreenOffset;

pScreen->cbPitch cbPitch;
pScreen->cBpp 32,

uint32 t const «cbPixel = RT_ALIGN(pScreen->cBpp, 8) / 8;
uint32_t const cbScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

void vmsvgaR3CmdDefineScreen(PVGASTATE pThis, PVGASTATECC pThisCC, SVGAFifoCmdDefineScreen const *pCmd)

- = =

uint32 t const idScreen = pCmd->screen.id;
ASSERT_GUEST_RETURN_VOID(idScreen < RT_ELEMENTS(pSvgaR3State->aScreens));
uint32_t const ulWidth = pCmd->screen.size.width;
ASSERT_GUEST_RETURN_VOID(uWidth <= pThis->svga.u32MaxWidth);

uint32_t const uHeight = pCmd->screen.size.height;
ASSERT_GUEST_RETURN_VOID(uHeight <= pThis->svga.u32MaxHeight);

uint32_t const cbWidth = uWidth * ((32 + 7) / 8); @todo

uint32 t const cbPitch = pCmd->screen.backingStore.pitch ? pCmd->screen.backingStore.pitch : cbWidth;
ASSERT_GUEST_RETURN_VOID(cbWidth <= cbPitch);

uint32 t const uScreenOffset = pCmd->screen.backingStore.ptr.offset;
ASSERT_GUEST_RETURN_VOID(uScreenOffset < pThis->vram_size);

uint32 t const cbVram = pThis->vram_size - uScreenOffset;

ASSERT_GUEST_RETURN_VOID(uHeight == © && cbPitch ==
|| (cbPitch > @ && uHeight <= cbVram / cbPitch));

if (!RT_BOOL(pCmd->screen.flags & (SVGA_SCREEN_DEACTIVATE | SVGA_SCREEN_BLANKING)))

- = =

pScreen->cWidth uWidth;
pScreen->cHeight = uHeight;
pScreen->offVRAM = uScreenOffset;

pScreen->cbPitch cbPitch;
pScreen->cBpp 32,

uint32 t const «cbPixel = RT_ALIGN(pScreen->cBpp, 8) / 8;
uint32 t const cbScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel,;

void vmsvgaR3CmdDefineScreen(PVGASTATE pThis, PVGASTATECC pThisCC, SVGAFifoCmdDefineScreen const *pCmd)

- = =

uint32 t const idScreen = pCmd->screen.id;
ASSERT_GUEST_RETURN_VOID(idScreen < RT_ELEMENTS(pSvgaR3State->aScreens));
uint32_t const ulWidth = pCmd->screen.size.width;
ASSERT_GUEST_RETURN_VOID(uWidth <= pThis->svga.u32MaxWidth);

uint32_t const uHeight = pCmd->screen.size.height;
ASSERT_GUEST_RETURN_VOID(uHeight <= pThis->svga.u32MaxHeight);

uint32_t const cbWidth = uWidth * ((32 + 7) / 8); @todo

uint32 t const cbPitch = pCmd->screen.backingStore.pitch ? pCmd->screen.backingStore.pitch : cbWidth;
ASSERT_GUEST_RETURN_VOID(cbWidth <= cbPitch);

uint32 t const uScreenOffset = pCmd->screen.backingStore.ptr.offset;
ASSERT_GUEST_RETURN_VOID(uScreenOffset < pThis->vram_size);

uint32 t const cbVram = pThis->vram_size - uScreenOffset;

ASSERT_GUEST_RETURN_VOID(uHeight == © && cbPitch ==
|| (cbPitch > @ && uHeight <= cbVram / cbPitch));

if (!RT_BOOL(pCmd->screen.flags & (SVGA_SCREEN_DEACTIVATE | SVGA_SCREEN_BLANKING)))

- = =

pScreen->cWidth uWidth;
pScreen->cHeight = uHeight;
pScreen->offVRAM = uScreenOffset;

pScreen->cbPitch cbPitch;
pScreen->cBpp 32,

uint32 t const cbPixel = RT_ALIGN(pScreen->cBpp, 8) / 8;
uint32 t const cbScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

void vmsvgaR3CmdDefineScreen(PVGASTATE pThis, PVGASTATECC pThisCC, SVGAFifoCmdDefineScreen const *pCmd)

- = =

uint32 t const idScreen = pCmd->screen.id;
ASSERT_GUEST_RETURN_VOID(idScreen < RT_ELEMENTS(pSvgaR3State->aScreens));
uint32_ t const uWidth = pCmd->screen.size.width;
ASSERT_GUEST_RETURN_VOID(uWidth <= pThis->svga.u32MaxWidth);

uint32 t const uHeight = pCmd->screen.size.height;
ASSERT_GUEST_RETURN_VOID(uHeight <= pThis->svga.u32MaxHeight);

uint32 t const cbWidth = uWidth * ((32 + 7) / 8); @todo

uint32 t const cbPitch = pCmd->screen.backingStore.pitch ? pCmd->screen.backingStore.pitch : cbWidth;
ASSERT_GUEST_RETURN_VOID(cbWidth <= cbPitch);

uint32 t const uScreenOffset = pCmd->screen.backingStore.ptr.offset;
ASSERT_GUEST_RETURN_VOID(uScreenOffset < pThis->vram_size);

uint32_t const cbVram = pThis->vram_size - uScreenOffset;

ASSERT_GUEST_RETURN_VOID(uHeight == © && cbPitch ==
|| (cbPitch > @ && uHeight <= cbVram / cbPitch));

if (!RT_BOOL(pCmd->screen.flags & (SVGA_SCREEN_DEACTIVATE | SVGA_SCREEN_BLANKING)))

- = =

pScreen->cWidth uWidth;
pScreen->cHeight = uHeight;
pScreen->offVRAM = uScreenOffset;
pScreen->cbPitch cbPitch;
pScreen->cBpp 32,

uint32 t const cbPixel = RT_ALIGN(pScreen->cBpp, 8) / 8;
uint32 t const cbScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

void vmsvgaR3CmdDefineScreen(PVGASTATE pThis, PVGASTATECC pThisCC, SVGAFifoCmdDefineScreen const *pCmd)

- = =

uint32 t const idScreen = pCmd->screen.id;
ASSERT_GUEST_RETURN_VOID(idScreen < RT_ELEMENTS(pSvgaR3State->aScreens));
uint32_ t const uWidth = pCmd->screen.size.width;
ASSERT_GUEST_RETURN_VOID(uWidth <= pThis->svga.u32MaxWidth);

uint32 t const uHeight = pCmd->screen.size.height;
ASSERT_GUEST_RETURN_VOID(uHeight <= pThis->svga.u32MaxHeight);

uint32 t const cbWidth = uWidth * ((32 + 7) / 8); @todo

uint32 t const cbPitch = pCmd->screen.backingStore.pitch ? pCmd->screen.backingStore.pitch : cbWidth;
ASSERT_GUEST_RETURN_VOID(cbWidth <= cbPitch);

uint32 t const uScreenOffset = pCmd->screen.backingStore.ptr.offset;
ASSERT_GUEST_RETURN_VOID(uScreenOffset < pThis->vram_size);

uint32_t const cbVram = pThis->vram_size - uScreenOffset;

ASSERT GUEST RETURN_VOID((uHeight == © && cbPitch ==
|| (cbPitch > @ &&(uHeight <= cbVram / cbPitch }})

if (!RT_BOOL(pCmd->screen.flags & (SVGA_SCREEN_DEACTIVATE | SVGA_SCREEN_BLANKING)))

- = =

pScreen->cWidth uWidth;
pScreen->cHeight = uHeight;
pScreen->offVRAM = uScreenOffset;
pScreen->cbPitch cbPitch;
pScreen->cBpp 32,

static void vmsvgaR3RectCopy(PVGASTATECC pThisCC, VMSVGASCREENOBIJECT const *pScreen, uint32 t srcX, uint32_t srcy,
uint32_t dstX, uint32_t dstY, uint32_t width, uint32_t height, unsigned cbFrameBuffer)

uint32 t const c¢bScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

uMaxOffset = (RT_MAX(srcY, dstY) + height) * cbScanline + (RT_MAX(srcX, dstX) + width) * cbPixel;
if (uMaxOffset >= cbFrameBuffer)

{
Log(("Max offset (%u) too big for framebuffer (%u bytes), ignoring!\n", uMaxOffset, cbFrameBuffer));

return;

pSrc = pDst = pThisCC->pbVRam;
pSrc += srcY * cbScanline + srcX * cbPixel;
pDst += dstY * cbScanline + dstX * cbPixel;

if (srcY »>= dstY)

{
for (; height > ©; height--
memmove(pDst, pSrc, cbRectWidth);
pSrc += cbScanline;
pDst += cbScanline;
}
else
f
pSrc += cbScanline * (height - 1);
pDst += cbScanline * (height - 1);
for (; height > ©; height--
memmove(pDst, pSrc, cbRectWidth);
pSrc -= cbScanline;
pDst -= cbScanline;
}

static void vmsvgaR3RectCopy(PVGASTATECC pThisCC, VMSVGASCREENOBIJECT const *pScreen, uint32 t srcX, uint32_t srcy,
uint32_t dstX, uint32_t dstY, uint32_t width, uint32_t height, unsigned cbFrameBuffer)

uint32 t const cbScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

uMaxOffset = (RT_MAX(srcY, dstY) + height) * cbScanline + (RT_MAX(srcX, dstX) + width) * cbPixel;
if (uMaxOffset >= cbFrameBuffer)

Log(("Max offset (%u) too big for framebuffer (%u bytes), ignoring!\n", uMaxOffset, cbFrameBuffer));
return;

pSrc = pDst = pThisCC->pbVRam;
pSrc += srcY * cbScanline + srcX * cbPixel;
pDst += dstY * cbScanline + dstX * cbPixel;

if (srcY »>= dstY)
{

for (; height > ©; height--

memmove(pDst, pSrc, cbRectWidth);
pSrc += cbScanline;
pDst += cbScanline;

5]

pSrc += cbScanline * (height - 1);
pDst += cbScanline * (height - 1);
for (; height > ©; height--

memmove (pDst, pSrc, cbRectWidth);
pSrc -= cbScanline;
pDst -= cbScanline;

static void vmsvgaR3RectCopy(PVGASTATECC pThisCC, VMSVGASCREENOBIJECT const *pScreen, uint32 t srcX, uint32_t srcy,
uint32_t dstX, uint32_t dstY, uint32_t width, uint32_t height, unsigned cbFrameBuffer)

uint32 t const c¢bScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

uMaxOffset = (RT_MAX(srcY, dstY) + height) * cbScanline + (RT_MAX(srcX, dstX) + width) * cbPixel;
if (uMaxOffset >= cbFrameBuffer)

{
Log(("Max offset (%u) too big for framebuffer (%u bytes), ignoring!\n", uMaxOffset, cbFrameBuffer));

return;

pSrc = pDst = pThisCC->pbVRam;
pSrc += srcY * cbScanline + srcX * cbPixel;
pDst += dstY * cbScanline + dstX * cbPixel;

if (srcY »>= dstY)

{
for (; height > ©; height--
memmove(pDst, pSrc, cbRectWidth);
pSrc += cbScanline;
pDst += cbScanline;
}
else
f
pSrc += cbScanline * (height - 1);
pDst += cbScanline * (height - 1);
for (; height > ©; height--
memmove(pDst, pSrc, cbRectWidth);
pSrc -= cbScanline;
pDst -= cbScanline;
}

static void vmsvgaR3RectCopy(PVGASTATECC pThisCC, VMSVGASCREENOBIJECT const *pScreen, uint32 t srcX, uint32_t srcy,
uint32_t dstX, uint32_t dstY, uint32_t width, uint32_t height, unsigned cbFrameBuffer)

uint32 t const c¢bScanline = pScreen->cbPitch ? pScreen->cbPitch : width * cbPixel;

uMaxOffset = (RT_MAX(srcY, dstY) + height) * cbScanline + (RT_MAX(srcX, dstX) + width) * cbPixel;
if (uMaxOffset >= cbFrameBuffer)

{
Log(("Max offset (%u) too big for framebuffer (%u bytes), ignoring!\n", uMaxOffset, cbFrameBuffer));

return;

pSrc = pDst = pThisCC->pbVRam;
pSrc += srcY * cbScanline + srcX * cbPixel;
pDst += dstY * cbScanline + dstX * cbPixel;

if (srcY »>= dstY)

{
for (; height > ©; height--
memmove(pDst, pSrc, cbRectWidth);
pSrc += cbScanline;
pDst += cbScanline;
}
else
f
pSrc += cbScanline * (height - 1);
pDst += cbScanline * (height - 1);
for (; height > ©; height--
memmove(pDst, pSrc, cbRectWidth);
pSrc -= cbScanline;
pDst -= cbScanline;
}

03/07
-
File Machine View Input Devices Help

Activities Terminal May 15 06:46

[#] root@vbox:/home/hoon/exploit

val 1
1d911996860
Tffabef20000
: 1d78cOc2eebd
: 1d811e70000

i
L]
i
i

03/07

VirtilO OOB/W

A structural flaw in the validation logic during
GSO (Generic Segmentation Offload) processing

static int virtioNetR3TransmitPkts(PPDMDEVINS pDevIns, PVIRTIONET pThis, PVIRTIONETCC pThisCC,
PVIRTIONETVIRTQ pTxVirtq, bool fOnWorkerThread)

pThisCC->pDrv->pfnAllocBuf(pThisCC->pDrv, uFrameSize, pGso, &pSgBufToPdmLeafDevice);

virtioNetR3TransmitFrame(pThis, pThisCC, pSgBufToPdmLeafDevice, pGso, pPktHdr);

VirtilO OOB/W

static DECLCALLBACK(int) drvNATNetworkUp AllocBuf(PPDMINETWORKUP pInterface, size t cbMin,
PCPDMNETWORKGSO pGso, PPPDMSCATTERGATHER ppSgBuf)

PPDMSCATTERGATHER pSgBuf = (PPDMSCATTERGATHER)RTMemAlloc(sizeof (*pSgBuf));

sbHdrsTotal
it (pGso->cbHdrsTotal + pGso->cbMaxSeg >= DRVNAT MAXFRAMESIZE)

L
Log(("drvNATNetowrkUp AllocBuf: drops over-sized frame (%u bytes), returns VERR_INVALID PARAMETER\n",
pGso->cbHdrsTotal + pGso->cbMaxSeg));
RTMemFree(pSgBuf);

return VERR INVALID PARAMETER;

03/07

VirtilO OOB/W

int virtioNetR3TransmitFrame(PVIRTIONET pThis, PVIRTIONETCC pThisCC, PPDMSCATTERGATHER pSgBuf,
PPDMNETWORKGS0 pGso, PVIRTIONETPKTHDR pPktHdr)

switch (pGso->u8Type)

* PDMNETWORKGSOTYPE _IPVA TCP:
* PDMNE TWORKGSOTYPE_IPV6 TCP:
pGso->cbHdrsTotal = pPktHdr->uChksumStart +
(PRTNETTCP) (((uint8 t*)pSgBuf->aSegs|@]|.pvSeg) + pPktHdr->uChksumStart))->th off * 4;

VirtlO OOB/W

static DECLCALLBACK(void) drvNATSendwWorker(PDRVNAT pThis, PPDMSCATTERGATHER pSgBuf)

{

if (PDMNetGsoIsValid(pGso, sizeof(*pGso), pSgBuf->cbUsed))
{

uint22 t const c¢Segs = PDMNetGsoCalcSegmentCount(pGso, pSgBuf->cbUsed); Assert(cSegs > 1);
for (uint32 t 1Seg = @; 1Seg < cSegs; 1Seg++

size t cbSeg;
vold FpvSeg;

m = slirp ext m get(pThis->pNATState, pGso->cbHdrsTotal + pGso->cbMaxSeg, &pvSeg, &cbhSeg);
1t (Im)
break;

uint32 t cbPayload, cbHdrs;
uint32 t offPayload = PDMNetGsoCarveSegment(pGso, pbFrame, pSgBuf->cbused,

1Seg, cSegs, (uintg8 t *)pvseg, &cbHdrs, &cbPayload);
memcpy((uintg8 t *)pvSeg + cbHdrs, pbFrame + offPayload, cbPayload),

ZDI-CAN-27241

npatched

EXPLOIT

Sponsor reserves the right, in its sole discretion,
to allow non-default configurations if the Sponsor deems them
to be in the normal use case of the target under test.

VirtlO-Net OOB/W + Info Leak Exploit reliability stabilized at 90%+
(Guest Ubuntu + Host Windows)

We were waiting for
(Pwn20wn 2024 Vancouver was held in March)

03/07

EXPLOIT

X Our vulnerabilities: NOT FIXED

03/07

EXPLOIT

March was approaching but no Pwn2Own schedule announced
(Rumors suggested it would be held with OffensiveCon)

03/07

EXPLOIT

2025 Berlin with OffensiveCon : May

&&

X VirtlO-NET OOB/W : FIXED
&8&

Guest OS : RHEL

03/07

EXPLOIT

But still we had VGA R/VW vulnerabilities
Found new exploitation objects for RHEL

Successfully stabilized exploit reliability to 20%+

03/07

EXPLOIT

VGA-SVGA OOB R/W Exploit - Heap Spray

g
(e

File Machine WView Input Devices Help

OxDOOOTFFEAEOBI3TDM s B Ol 0x00000214C86F00002] Of
22 SERGUCL HE3E readll 5 SSLCL

ESIHEE Ohy 2 ®)F SFELAL,
E2IHEF CIHIAS (F2)F FEMRLA2,

Crash occurs: Memory not allocated at pbVRAM+0xffc00000
We need massive heap allocation (Almost 4GB)

EXPLOIT

VGA-SVGA OOB R/W Exploit - Heap Spray

case SVGA_CMD_DEFINE_GMR2:

SVGAFifoCmdDefineGMR2 *pCmd = (SVGAFifoCmdDefineGMR2 *)&pu8Cmd[cbCmd];
VMSVGA_INC_CMD_SIZE BREAK(sizeof(*pCmd));

E

vmsvgaR3CmdDefineGMR2(pThis, pThisCC, pCmd);

Exploit Object Requirements break;

e Massive heap allocation capability

o Need chunks at ~4GB offset

* Chunk size > Ox4000 void vmsvgaR3CmdDefineGMR2(PVGASTATE pThis, PVGASTATECC pThisCC,
o Avoid LFH guard Ppages SVGAFifoCmdDefineGMR2 const *pCmd)

o Reduce heap randomness

PVMSVGAR3STATE const pSvgaR3State = pThisCC->svga.pSvgaR3State;

STAM_REL_COUNTER_INC(&pSvgaR3State->StatR3CmdDefineGmr2);
Log(("SVGA_CMD_DEFINE_GMR2 id=%#x %#x pages\n", pCmd->gmrId, pCmd->numPages));

ASSERT_GUEST_RETURN_VOID(pCmd->gmrId < pThis->svga.cGMR);
ASSERT_GUEST_RETURN_VOID(pCmd->numPages <= VMSVGA_MAX_GMR_PAGES);

void vmsvgaR3CmdRemapGMR2(PVGASTATE pThis, PVGASTATECC pThisCC, SVGAFifoCmdRemapGMR2 const *pCmd)

{
PVMSVGAR3STATE const pSvgaR3State = pThisCC->svga.pSvgaR3State;

STAM_REL_COUNTER_INC(&pSvgaR3State->StatR3CmdRemapGmr2);
Log(("SVGA_CMD_REMAP_GMR2 id=%#x flags=%#x offset=%#x npages=%#x\n", pCmd->gmrId, pCmd->flags, pCmd->offsetPages, pCmd->numPages));

ASSERT_GUEST_RETURN_VOID(pCmd->gmrId < pThis->svga.cGMR);
RT_UNTRUSTED_VALIDATED_FENCE();
PGMR pGMR = &pSvgaR3State->paGMR[pCmd->gmrId];

= =

PVMSVGAGMRDESCRIPTOR paDescs,;

pGMR->paDesc = paDescs = (PVMSVGAGMRDESCRIPTOR)RTMemAllocZ(cNewTotalPages * sizeof(VMSVGAGMRDESCRIPTOR));
AssertReturnVoidStmt(paDescs, RTMemFree(paNewPage64));
else

{

uint32 t iDescriptor = ©;
for (uint32 t i = 1; i < cPages; i++

iDescriptor++;

paDescs[iDescriptor].GCPhys GCPhys;
paDescs[iDescriptor].numPages = 1;

Log5Func(("Page %x GCPhys=%RGp\n", 1, paDescs[iDescriptor].GCPhys));

03/07

EXPLOIT

VGA-SVGA OOB R/W Exploit - Heap Spray, Information Leak
VRAM + Oxff800000

VRAM GMR1 GMR 2 Sieie GMRN GMR N+1

03/07

EXPLOIT

VGA-SVGA OOB R/W Exploit - Heap Spray, Information Leak
VRAM + Oxff800000

VRAM GMR1 GMR 2 Sieie FREE GMR N+1

03/07

EXPLOIT

VGA-SVGA OOB R/W Exploit - Heap Spray, Information Leak
VRAM + Oxff800000

VRAM GMR1 GMR 2 Sieie URB GMR N+1

EXPLOIT

VGA-SVGA OOB R/W Exploit - URB

static PVUSBURB vusbRhNewUrb(PVUSBROOTTHUB pRh, uint2 t DstAddress, uint32 t uPort,
VUSBXFERTYPE enmType,
VUSBDIRECTION enmDir, uint32 t cbData, uint32 t c¢Tds, const char *pszTag)

if (RT_LIKELY(pUrb))

pUrb->pVUsb->pvFreeCtx pRh;
pUrb->pVUsb->pfnFree vusbRhFreeUrb;
pUrb->DstAddress DstAddress;
pUrb->pVUsb->pDev pDev;
pUrb->pVUsb->pUrb puUrb;

Information Disclosure via VUSBURB:
v VboxDD.dll base address

v Heap addresses

v VRAM & roothub address derivation

EXPLOIT

VGA-SVGA OOB R/W Exploit - URB
linked list structure

typedef struct RTLISTNODE
{

struct RTLISTNODE *pNext;

struct RTLISTNODE *pPrev;
} RTLISTNODE;

typedef struct VUSBURBHDR
{

RTLISTNODE NdFree;

size t cbAllocated;

uint32_t cAge;
#if HC_ARCH_BITS == 64
uint32_t u32Alignment®;
#endif

VUSBURB Urb;
} VUSBURBHDR;

EXPLOIT

VGA-SVGA OOB R/W Exploit - URB

- ad
- I

R
B

Data Data Data

EXPLOIT

VGA-SVGA OOB R/W Exploit - URB

Overwrite Node

Data Data Data

EXPLOIT

VGA-SVGA OOB R/W Exploit - URB

Unlink Node

Data Data Data

EXPLOIT

VGA-SVGA OOB R/W Exploit - URB

typedef struct VUSBROOTHUB
{

PPDMDRVINS pDrvIns;
PVUSBIROOTHUBPORT pIRhPort;
VUSBIROOTHUBCONNECTOR IRhConnector;
RTCRITSECT CritSectDevices;

PVUSBDEV apDevByPort[VUSB DEVICES MAX];

PVUSBDEV apDevByAddr[VUSB_DEVICES MAX];

/* overwrite apDevbyAddr[0x10]
apDevbyAddr[0x10] = viam+0x800000 */

EXPLOIT

VGA-SVGA OOB R/W Exploit - URB

typedef struct VUSBDEV VUSBCTRLEXTRA's pbCur points to the next
{ read/write address Controlling pbCur enables
AAR & AAW through control pipe

static int vusbUrbSubmitCtrl(PVUSBURB pUrb)
VUSBPIPE aPipes[VUSB_PIPE_MAX]; {
#ifdef LOG_ENABLED
typedef struct vusb_pipe
{ #endif
PVUSBDEV pDev = pUrb->pVUsb->pDev;
PVUSBPIPE pPipe = &pDev->aPipes|[pUrb->EndPt];

PVUSBCTRLEXTRA pCtrl;
RTCritSectEnter(&pPipe->CritSectCtrl);

‘{“"‘pada‘c s el s PVUSBCTRLEXTRA pExtra = pPipe->pCtrl;

memcpy (pUrb->abData, pExtra->pbCur, cbRead);

EXPLOIT

VGA-SVGA OOB R/W Exploit - Code Execution

@implements When hSniffer iS not NULL,
o s Vs VUSBSnifferRecordEvent gets called

{

VUSBSNIFFER hSniffer;

static DECLCALLBACK(int) wvusbRhSubmitUrb(PVUSBIROOTHUBCONNECTOR pInterface, PVUSBURB pUrb, PPDMLED plLed)

N

{

if (pRh->hSniffer != VUSBSNIFFER_NIL)
{
int rc = VUSBSnifferRecordEvent(pRh->hSniffer, pUrb, VUSBSNIFFEREVENT_SUBMIT);

if

el(("VUSB: Capturing URB submit event on the root hub failed with %Rrc\n", rc));

EXPLOIT

VGA-SVGA OOB R/W Exploit - Code Execution

Overwrite sniffer with guest-accessible address
and set pfnRecordEvent to target function = arbitrary code execution

=y

&« redhat_96 (Snapshot 1) [Running] - Oracle VirtualBox

et File Machine View Input Devices Help

@returns

@param hSniffer Activities Terminal May 15 06:48
@param pUrb

@param enmEvent

N [+] root@vbox:/home/hoon/exp

DECLHIDDEN(int) VUSBSnifferRecordEvent(VUSBSNIFFER hSniffer, weww Find 1612 WinExec

{ 229, winexec 7ffb85560990

g

int rc = VINF_SUCCESS; 229, J| ccc over
PVUSBSNIFFERINT pThis = hSniffer; [root@vbox exploitl]#

= RTSemFastMutexRequest(pThis->hMtx);
if (RT_SUCCESS(rc))
I
L
rc = pThis->pFmt->pfnRecordEvent((PVUSBSNIFFERFMTINT)&pThis->abFmt[@], pUrb, enmEvent);
RTSemFastMutexRelease(pThis->hMtx);

}

return rc;

s
S e il 4)
Tools 0 N G -
e Mew Add Settings card Start
3 |
ik — General
' Mborted o e Mame: dhwkhkk
Oy TS VirtualBox - About
L
| Shared folders
Mone
B Description
Mone
0 15¢ = -8
g i-= Q 24 --fm_,,

b

- C @ 80 0

B preview

dwikkk

Ao A BE®

E*— 11:45 7
2025-04-30 &

03/07

CONCLUSION

* Due to CFl protection, JOP and ROP remain difficult,
necessitating better CFl bypass methods for sophisticated attacks

e Complex virtualization device implementation continues
harboring persistent bugs.

* Rookies fear complexity but succeed with proper guidance
Individual growth strengthens entire security community

03/07

VFIEXACORN /23

Thank you

E-mail credsi1337@gmail.com

