IFIEXACON/ = Impalabs

DISSECTING THE PRIVILEGED
COMPONENTS OF HUAWEI MOBILE DEVICES

chas +_ fastcall meacy(chas *esal
EooT wiigpy
x, 1

e
v8 = (easywed _iat®hvd & 3
Af | ((omalguad™ Lonkyed & 3} 1w @)
]
Lf (a3 > Ga2F)
«
Vi = a2 =
Vi) w A - Gt
Vil = | JNORD *|a2
;;;;;;;
'
v -

VIl = VAT 0 A
Vb » xi[1)
vI0 -3 ¢ b2
Wik = Vi
o - v34 + 2
w1 =T
VIS lRerrrrTrEY] - Wi
W - IR0 ¢ ¥2l] L
w3 o
)
i
*44 = o oRR ¥ (vdd ¢ B
¥ 4= ERLO:
el 4o 8al0)
S{CDHEI0 v ¢ G | = PAIRGA__Ceid. ¥18) b OxE
WSTe o EacHE *) (Wi + O |
L PWERT Ivd) + G | = TAIMA__(wiS, 8) 3> Qb
casT 7
_twid, we) 3> Oxlt
mid__(vis, whk) >> Gl

[—

e _m...l
L 5,0
= ER —
o3, ‘

..........

A boutUs

- @lyte__

Security researcher & Co-founder

- @NeatMonster_

Security researcher & Co-founder

- @the_impalabs

French offensive security company

Reverse engineering, vulnerability research, exploit development

Website — https://impalabs.com

Blog — https://blog.impalabs.com

Outihhne

Introduction

Bootchain

Hypervisor

Secure Monitor

Secure Kernel
Trusted OS

Trusted Applications

Conclusion

Introduction

ANdroid Device Architecture

P Access control to resources from
user space is enforced by the kernel
PROC PROC PROC
e Address space isolation

e Preemptive multitasking KERNEL

e Peripherals access restriction

> Single point of faillure

e Breaching kernel defenses results

IN full system compromise

ANdroid Device Architecture

P CPU virtualization

e ITraditionally used to execute multiple operating

systems in parallel on the same device PROC PROC PROC

e Leveraged on Android devices to enhance

system security instead

KERNEL

[ARM virtualization extensions
e Additional privilege level
HYPERVISOR

e MNMemory access restrictions

e Exceptions interception

| PFProtects critical data structures at run time

e Credentials, security contexts, page tables, etc.

ANdroid Device Architecture

| Pystem-wide hardvware separation

e AN untrusted Normal worlild and a trusted

Secure World

PROC PROC PROC

e Access to secure hardware resources from

_ . SVC ¢
NnonNn-secure software is prohibited
e INnter—world communications through the KERNEL
Secure Monitor HVC *
[TrustZone and Secure Boot are used to create a HYPERVISOR
Trusted Execution Environment (TEE)
e Authentication (e.g. for encrypted filesystem)
e Nobile payment, secrets management, etc. SECURE MON'TOR

e Content management (DRM)

ANdroid Device Architecture

| Hach stage cryptographically checks that the

next image is authorized to run

BOOTROM
e Creates a Cha|n Of tI’USt
Loads from UFS, Loads from USB,
verifies & executes verifies & executes
e Starting from the FOO’[Of trUSt an mmutable
component
[FPrevents unauthorized or modified software from
executing on the device
[PENMs mplement additional features
e Anti-rollback mechanism
e Emergency boot over USB KERNEL HYPERVISOR TRUSTZONE

e Boot i mages encryption

Boot Chain

Boot Chainm

P secu rity mechanisms

BOOTROM

@ Secure boot: prevents replacing or modifying

boot chain images

e Bootloader lock: prevents reflashing the

partitions or running a custom kernel

> Bootstrapping challenges
e All critical partitions are encrypted
e Can’t talk directly to targeted components

e Countermeasures in kernel and useriand

[etting control over the boot chain

e High entry cost: we need to find a KERNEL

vulnerability first

Boot Chainm

| P30 Lite (Kirin 710 chipset)

BOOTROM

e Xloaderis signed but not encrypted, thus

can be retrieved from a firmware update

e Found a vulnerability Iin its

Implementation of XmOdem the USB

recovery protocol

The next stage binary’s base address is

Nnot verified

Can be leveraged to modify Xloader

itself (all memory is RVWWX)

Shorting a test point on the device

KERNEL

activates the dowvwnload mode feature

Boot Chainm

BOOTROM

| BPA0 Lite (Kirin 810 chipset)
e Xloaderis signed and encrypted

e Butitis also affected by the
XmOdem vulnerability that needs to

be exploited blindly

e Decryption key no longer stored in
fuses and is only accessible to the

CcCrypto engine

Firmwvvare images are retrieved

KERNEL

by using the device as an oracle

Boot Chainm

BOOTROM
|j40 PrO (Kirin 990 chipset)

e Xloaderis signed, encrypted,

but Nnot vulnerable to the

xmodem bug

e Fastbootis splitinto a privileged

o
&m
>
o~
-

=38
oW
ool 4
=
=

and an unprivileged component

e AnNnother vulnerability iIs needed

to get control over the boot chain

KERNEL

Boot Chainm

| Talk presented at B‘aCkHat USA 2021 by Taszk Security Labs
e Revealed multiple Xloader and BoOootROM bugs

e INncluding the Xloader vulnerability that we had discovered

| CVE-2021-2249434: Head Chunk Resend State Machine Confusion
e INnternal state is not reset when sending an incorrect payload address
e BOOtROM code execution can be achieved from this arbitrary write primitive

e Must be exploited blindly on the Kirin 990 chipset

" Dump Xloader using the F‘aSh PatCh and Breaprlnt unit of the LPMCU

| Huawel “fixed” the BootROM bugs by burning a fuse to disable the USB recovery mode

Boot Chainm

Steps Steps
[Fend patched Xloader to the [Fend patched Fastboot to
BoOootROM Xloader
[Force its execution by [Patches allow execution to
overwriting a return address continue normally

BOOTROM XLOADER FASTBOOT

Patches Patches
[Remove the address [€£hange boot mode from
and length checks USB to UFS
[DPisable decryption and [Tlonore the Android Verified
signature verification Boot failure

| Fimilarly to “CHECKM30” presented at MOSEC 2021 by Pangu Team

Security Hypervisor

Security Hypervisor

[Falled Huawwei Hypervisor Execution Environment (HHEE)

e Similar to uH/RKP on Samsung’s Exynos or OQOHEE on

Qualcomm’s Snapdragon

P> Main Security Features

e Prevents arbitrary changes to the kernel read-only data,

its page tables, SELIiNUX structures, etc.

e Keeps aread-only copy of tasks’ information to detect

privilege escalation on the next syscall or file access

e Ensures only the pages belonging to the kernel and

modules code segment can be executed at ELL

e Makes critical physical memory regions (e.g. sensorhub,

secure npu, modem, etc.) inaccessible to ELLO and EL1

e Enables execute-only user space memory that is

unreadable from the kernel

CODE CODE CODE CODE CODE CODE CODE CODE

RO RO RO RO

CODE CODE CODE CODE , rp pDATA DATA DATA

RO RO

CODE CODE CODE CODE CODE CODE DATA DATA
PAGE Executable PAGE Read-Only
WWrite-Mediated Read-WWrite

Security Hypervisor

[VYirtual address translation is

extended with a second stage

e | he VA Is first transliated iNto an

Intermediate Physical Address

e | he |IPA is then translated into a PA

| Tf uses a second set of page tables

under the control of the hypervisor

e ['hese page tables can apply

additional access control

| T he hypervisor also has its ovwn page

tables for its virtual address space

VIRTUAL
MEMORY

HYP (EL2)

TRANSLATION
TABLES

TTBRn_EL1

TRANSLATION
TABLES

TTBRO_EL2

INTERMEDIATE

PHYSICAL MEMORY

TRANSLATION
TABLES

VTTBRO_EL2

PHYSICAL
MEMORY

MEMORY

PERIPHERALS

MEMORY

PERIPHERALS

Security Hypervisor

54 53 7 6

XN[1] XN[O] Access

S2AP EL1 and ELO Access

XN[1] XN[O] Access = None

(@) o Executable at ELO and EL1

o 1 Executable only at ELO o RESO Executable at ELO and EL1 o1 Read-only

1 o Not executable at ELO or EL1 1 RESO Notexecutable at ELO or EL1 10 Write—only

1 1 Executable only at EL1 11 Read/write
with FEAT_XNX without FEAT_XNX

| PFtage 2 permissions cannot distinguish between ELO and EL1 for:

e Read and write accesses

e Executability, if FEAT_XNX Is not mplemented

[Tfis the main reason stage 1 page tables also need to be controlled by the hypervisor

Security Hypervisor

P Initial processing
e Traps changes made to the TTBR7_EL7 and SCTRL_EL7 system registers

e Performs a page table walk and ensures every descriptor is sane and coherent

" e.g. descriptors with the contiguous bit set actually point to contiguous memory

e Enforces ELO/ELL distinction for read-write accesses and executability

" By default, kernel pages are set non executable at ELL1L and non accessible at ELLO

> Changes monitoring

e Kernel page tables are set as read-only in the second stage

" Except when permiassions can be enforced at previous table level (PXNTable/APTable)

@ A write to a stage 1 descriptor or a transiation fault during a page table walk raises an exception

* Handled by the hypervisor to ensure modifications are permitted and update stage 2 accordingly

Security Hypervisor

58 55

Attrs Description

ObOO00O Unmarked

| Hypervisor Softvware Attributes

ObO100 Level O Page Table

e Bitfield stored in bits [58:55] of a stage 2 descriptor

ObO101L Level 1 Page Table

opoito Level=Page Table e Contains usage information about the underlying memory region

OboOo111 Level 3 Page Table

Ob1000 ©OS Read-Only e Used to prevent disallovwed changes to protected memory

Ob1001 OS Module Read-Only

. [| - - -
Ob1010 Hyp-mediated OS Read-Only e.g. making a OS read-only page writable again

Obl1011 Hyp-mediated OS Module Read-Only

Obl1100 Shared Obj Protection Execute-Only . . .
| Rules enforced while modifying them

e Only ummarked descriptors can be marked

e To unmark a descriptor, the current marking must be provided

Security Hypervisor

| HExtensive reverse engineering [THentifying the attack surface
e Static analysis e H\V/C and SMC handlers
" 68 KB raw binary e Faulting memory accesses
" AArch64a code e ITrapped system registers accesses

" 295 functions " e.g. SCTLR_EL]. TCR_EL]. etc.

NoOo symbols e Nemory shared with the kernel
—10 log strings

e Analysis can be augmented with information [Fomparing the security hypervisors of different

coming from external sources OENMs might highlight mplementation flaws

" HVC names from the kernel source code

= Armv8-A Architecture Reference Manual

Security Hypervisor

HEADER

[TVVE-2021-39979

e LOgging system use a control structure located iNn shared memory that is

accessible to the kernel
e Pointer, offset and sizes fields are all unchecked

e \VWe can wvrite log strings at any virtual address that is mapped into the hypervisor

Security Hypervisor

| Constrained wvrite primitive
e The log string being written is not user-controlled

e Since the buffer is circular and written character by HEADER

character

" Only the last byte will remain imn memory if we set

the data size of the buffer to 1

It’s alvways the newv line character: \ N (OxA)

P Linear heap allocator

e Heap region has a fixed base address and size

" The current offset is stored in a global variable

e The allocation function assumes the offset value is vord mallcoccurntsad & sSsE=ce)

. CHEAP_S i1 ZE heap ofFfT
sane (smaller than the heap size)

@ Js
" Ifitisn’t, an iINteger underflow happens and the

heap oFTF pad

allocator returns out-of-bounds memory HEAP_ADDR

e Right after the heap is a kernel-accessible region

Security Hypervisor

> Getting code execution

OOOOOOOOOO

Security Hypervisor

> Getting code execution

O><x005BA400

e Step 1: Fill up the heap to its maxximum by

triggering stage 2 page tables allocations

Security Hypervisor

> Getting code execution

O><x005BA4A

e Step 1: Fill up the heap to its maxximum by

triggering stage 2 page tables allocations

e Step 2: Use the constrained wvrite primitive to

move the offset right past the end of heap

Security Hypervisor

> Getting code execution

e Step 1: Fill up the heap to its maxximum by

triggering stage 2 page tables allocations
Ox<x12F1.4C0OO0O

e Step 2: Use the constrained wvrite primitive to

move the offset right past the end of heap

e Step 3: Trigger a last stage 2 page table
allocation that is made out-of-bounds

because of the integer underflowv

Ox<x134CF000

S2 Page Table

Security Hypervisor

> Getting code execution

e Step 1: Fill up the heap to its maxximum by

triggering stage 2 page tables allocations

e Step 2: Use the constrained wvrite primitive to

move the offset right past the end of heap

e Step 3: Trigger a last stage 2 page table
allocation that is made out-of-bounds

because of the integer underflowv

Security Hypervisor

> Getting code execution

e Step 1: Fill up the heap to its maxximum by

triggering stage 2 page tables allocations

e Step 2: Use the constrained wvrite primitive to

move the offset right past the end of heap

e Step 3: Trigger a last stage 2 page table
allocation that is made out-of-bounds

because of the integer underflowv

e Step 4: Change the page table from the

kernel to remap the hypervisor as read-wvrite

O><x1 0000000

O><1 0001000

O>x<1 0002000

O<1 O01FDOOO

O<1O01FEOOO

Ox<101FFOO0OO

Ox<x12FO00000

Ox<x12FO01000

Ox<x12F02000

Ox<x130FDOO0O

Ox<x130FEOO0OO

Ox<x130FFO0OO0O0

RW

RW

RW

RW

RW

RW

Security Hypervisor

> Getting code execution

e Step 1: Fill up the heap to its maxximum by

triggering stage 2 page tables allocations

e Step 2: Use the constrained wvrite primitive to

move the offset right past the end of heap

e Step 3: Trigger a last stage 2 page table
allocation that is made out-of-bounds

because of the integer underflowv

e Step 4: Change the page table from the

kernel to remap the hypervisor as read-wvrite

e Step 5: Patch the hypervisor memory and get

code execution at EL2 from EL1L

" e.g. targeting one of the HVC handlers

O><x1 0000000

O><1 0001000

O>x<1 0002000

O<1 O01FDOOO

O<1O01FEOOO

Ox<101FFOO0OO

mrs >0,
sTtr >0,

rec

Ox<x12FO00000

Ox<x12FO01000

Ox<x12F02000

Ox<x130FDOO0O

Ox<x130FEOO0OO

Ox<x130FFO0OO0O0

CurrentEL

<81

RW

RW

RW

RW

RW

RW

TrustZzZonmne
Overview

NORMAL WORLD SECURE WORLD

/dev/binder

I TeecService

libgm libtee libvendor

/dev/hvwbinder

ILibteecGlobal

Perm
Platdrv RPMB SSA TUI
Serv

* @tc_ns_socket

‘ /dev/tc_ns_client

Shared

Non-Secure

NMemory

hmsysmgr hmfilemgr

TEEK

Client API Secure Kernel

SECURE MONITOR SMC

TEE-OS

Dispatcher
Forvward to custom TEE OS Handler

TrustctZonmne
Normal World Overview

> Java applications & native processes
- Main users of secure world features

- But not privileged enough to send requests to the Secure

wvVvorld

" Use the kernel as a proxy

[PBteps to send messages to the Secure World from userland
® Requests are received by the userland daemon teeCd
First go through tee_aUth_daemon for Java applications

e AnNnd then forwarded to the kernel through the character device

tc_ns_client

" Implements the agents (filesystem, networking, etc.)

* Provides a shared library to communicate with it

e The kernel then sends the requests to the Secure WwWorld

through an SMC

[Fach interface has its ovwn SELINuUx context to restrict access

NORMAL WORLD

Java Native

Applications Processes

/dev/binder

I TeecService

tee _auth_daemon

/dev/hwbinder

ILibteecGlobal

libteec@3.0O0-service

libteec_vendor

@tc_nNns_socket

Shared
teecd

Non-Secure

Memory

SOCKET

/dev/tc_ns_client

TEEK

et AB Kernel Driver

TrustctZonmne
Secure World Overview

SECURE WORLD

TA TA TA TA TA
libc libgm libtee libvendor
P Secure Monitor
- Handles SMCs and forwards requests to e
the trusted OS
P Trusted OS
= Based on a micro-kernel architecture e e Bmrilernor
e Trusted applications running on top of
privileged tasks and drivers
Secure Kernel
SECURE MONITOR SMC

TEE-OS

Dispatcher

Forvward to custom TEE OS Handler

Secure Vionitor

[Bxecutes at EL 3, the highest privilege level

e Performs privileged operations and manages

critical hardwware peripherals

" e.g. efuses, power controls, RPMB, etc.

e Bridge between the Normal and Secure

VvVWorlds

" Forwards requests between the kernel and

the trusted OS

[Huawei’'s mplementation based on the ARM

Trusted Firmwvvare (ATF)
e Open source, probably heavily revievwed

[Huawei implemented additional runtime services
SECURE MONITOR

e ['hese handlers are more likely to be vulnerable
TEE-OS

SMC Handlers
Dispatcher

Secure Vionitor

[CVVE-2021-39994

e Secure Monitor acts as a pass-through for the kernel to interact with

the Secure Element (SE)

® A response from the SE uses the Usef_data structure where the user

controls:

® The address of Usef_dafa, that contains the response metadata

® The address and size of the reponse data: Usef_data.addf and

user _data.size

e Bounds check

' The user—provided addresses for usef_dafa and Use/f_data.add/f

must be iNn a specific world-shared memory buffer

“ However, in one of the requests, the check is missing for

user _data

e INnformation about the SE’s response is thus written at a user-—

controlled address

* The response code OXAABBCC55 at offset 4

* The response size in the range OXO—OXC at offset OxC

* The response data address Usef_daz-a.addf, which is checked

struct {
ENTE32 € unkn
NTt32 T« code
ENCEC32 © addr
NTt32 € size

user _data:

urNcEt33I2 € user_si

wvord on__repilydurnnNnt3d2 t addr, umInNnct3d2 Tt sSi
user_data.code AABBCCS5S5 ;
user_data-sEize mEnNndCsize, user_size) :

Ccheck(user_ _data-addr , user_data-sEize))

memcpy duser _data.-addr, addr ., user_ _data-size) :

Secure Vionitor

Data overwvritten using the SE

response metadata

[] Step 1: Use the response metadata to disable the check on the

O><x40000000

shared memory region

O><1 0000000

- Allows copying the response data at an arbitrary

user data.addr

e Dataisn’t controlled either, but gives us more options

Secure Vionitor

Data overwritten using the SE

response metadata

[] Step 1: Use the response metadata to disable the check on the

shared memory region

- Allows copying the response data at an arbitrary

user data.addr

e Dataisn’t controlled either, but gives us more options

Secure Vionitor

[] Step 1: Use the response metadata to disable the check on the

shared memory region

- Allows copying the response data at an arbitrary

user data.addr

e Dataisn’t controlled either, but gives us more options

[] Step 2: Hijack a SMC handler pointer
e 1-byte overwrite by specifying a response size of 1

e Change an existing function pointer to an interesting gadget

* BLR X2 — = arbitrary function call Arbitrary Call Gadget

LDR X2 . [X2.,#0x<Bs87]

Ox<x14204A7C
CBNZ X2, loc__14204AA0

BLR X2

Secure Vionitor

[] Step 1: Use the response metadata to disable the check on the

shared memory region

- Allows copying the response data at an arbitrary

user data.addr

e Dataisn’t controlled either, but gives us more options

[] Step 2: Hijack a SMC handler pointer
e 1-byte overwrite by specifying a response size of 1

e Change an existing function pointer to an interesting gadget

* BLR X2 — = arbitrary function call Arbitrary Call Gadget

LDR X2 . [X2.,#0x<Bs87]

Ox<x14204A7C
CBNZ X2, loc__14204AA0

BLR X2

Secure Vionitor

[] Step 1: Use the response metadata to disable the check on the

shared memory region

- Allows copying the response data at an arbitrary

user data.addr

e Dataisn’t controlled either, but gives us more options

[] Step 2: Hijack a SMC handler pointer
e 1-byte overwrite by specifying a response size of 1

e Change an existing function pointer to an interesting gadget

BLR X2 —= arbitrary function call Arbitrary Call Gadget
[1 Step 3: Call a write gadget to create stable read and write oxiazoaazc || oo o- bEE-memeed

primitives

BLR X2

Arbitrary Write Gadget

STR wi. [XO1
CSINC WO. w21, WZR. NE
Ox<1420CF838 LDP X19. X20. [SP.#0x10]
LDP X221, X222, [L[SP.#0x20]
LDP X223, X224, [L[SP.,#0x307]
LDP X229, X330, [L[SP] .#0x50
RET

Secure Vionitor

[] Step 1: Use the response metadata to disable the check on the

shared memory region

- Allows copying the response data at an arbitrary

user data.addr

e Dataisn’t controlled either, but gives us more options

[] Step 2: Hijack a SMC handler pointer

e 1-byte overwrite by specifying a response size of 1

e Change an existing function pointer to an interesting gadget IR 14205574
* BLR X2 — = arbitrary function call Arbitrary Call Gadget
[1 Step 3: Call a write gadget to create stable read and write oxiazoaazc || oo o- bEE-memeed
primitives BLr x2

Arbitrary Write Gadget

STR wi. [XO1
CSINC WO. w21, WZR. NE
Ox<1420CF838 LDP X19. X20. [SP.#0x10]
LDP X221, X222, [L[SP.#0x20]
LDP X223, X224, [L[SP.,#0x307]
LDP X229, X330, [L[SP] .#0x50
RET

Secure

[] Step 1: Use the response metadata to disable the check on the

shared memory region

- Allows copying the response data at an arbitrary

user data.addr

e Dataisn’t controlled either, but gives us more options

[] Step 2: Hijack a SMC handler pointer
e 1-byte overwrite by specifying a response size of 1
e Change an existing function pointer to an interesting gadget

" BLR X2 —= arbitrary function call

[1Step 3: Call a write gadget to create stable read and write

primitives

NMoONItor

Arbitrary Write

Arbitrary Read

Ox<x14205E74

Ox<x142013F4a

Secure

[] Step 1: Use the response metadata to disable the check on the

shared memory region

- Allows copying the response data at an arbitrary

user data.addr

e Dataisn’t controlled either, but gives us more options

[] Step 2: Hijack a SMC handler pointer
e 1-byte overwrite by specifying a response size of 1
e Change an existing function pointer to an interesting gadget

" BLR X2 —= arbitrary function call

[1Step 3: Call a write gadget to create stable read and write

primitives
[] Step 4: Double map the Secure Monitor because of WXN
e Locate the secure monitor page tables

e Add newvw entries where the memory is read-wvrite

e Patch the code to gain code execution

NMoONItor

Arbitrary Write

Arbitrary Read

Ox<x14205E74

Ox<x142013F4a

Secure

[] Step 1: Use the response metadata to disable the check on the

shared memory region

- Allows copying the response data at an arbitrary

user data.addr

e Dataisn’t controlled either, but gives us more options

[] Step 2: Hijack a SMC handler pointer
e 1-byte overwrite by specifying a response size of 1
e Change an existing function pointer to an interesting gadget

" BLR X2 —= arbitrary function call

[1Step 3: Call a write gadget to create stable read and write

primitives
[] Step 4: Double map the Secure Monitor because of WXN
e Locate the secure monitor page tables

e Add newvw entries where the memory is read-wvrite

e Patch the code to gain code execution

NMoONItor

Arbitrary Write

Arbitrary Read

Ox<x14205E74

Ox<x142013F4a

Secure

[] Step 1: Use the response metadata to disable the check on the

shared memory region

- Allows copying the response data at an arbitrary

user data.addr

e Dataisn’t controlled either, but gives us more options

[] Step 2: Hijack a SMC handler pointer
e 1-byte overwrite by specifying a response size of 1
e Change an existing function pointer to an interesting gadget

" BLR X2 —= arbitrary function call

[1Step 3: Call a write gadget to create stable read and write

primitives
[] Step 4: Double map the Secure Monitor because of WXN
e Locate the secure monitor page tables

e Add newvw entries where the memory is read-wvrite

e Patch the code to gain code execution

NMoONItor

Arbitrary Write

Arbitrary Read

Ox<x14205E74

Ox<x142013F4a

O>x<15000000

O>x<15001000

Ox<x15002000

O><14000000

O>x<14001000

O>x<14002000

RwW

RwW

RwW

Trusted OS

[Huawvei Trusted OS based on a micro-kernel

architecture

e Secure Kernel (S-EL1)

" Responsibilities kept to the bare minimum

" Critical operations are performed through an

API restricted to Managers in useriland

e Processes (S-ELO)

" Managers: privileged processes providing

the core functionality of the trusted OS

Tasks & Drivers: implement additional OS

services used by the trusted applications

Trusted Applications: Huawvwei and 3rd party

applications providing services to the REE

Trusted OSsS
Boot Process

TEEOS SECURE
LOADER KERNEL PLATDRV
SYSTEM
MANAGER DRV_TIMER
FILE
MANAGER TEESMCMGR
TEEOS CPIO Archive TEEOS
. TASKS

lll

FILEMGR RAMFS Archive

Secure kkermel

| Pnly performs lowvw-level operations, such

as:
e Physical memory allocation

e INnter—-process communication
e Process scheduling

@ Access control management
| Hverything else is mplemented in useriand

| $VCs for critical operations restricted to

the Managers

Secure kkermel

[I Capability-based OS [1Capability type examples

- Privileges are divided into distinct units called - CNode

capabilities
- T hread

- Provides fine—-grained access to kernel
- PMEM

resources
- Channel /7 Notification / Message

[JHuawei Implementation
- IROCTRL /7 IROHDLR

- Most likely inspired by sellL4
- VSRoOOt

- Capabilities system described in a patent filed
- Timer
iNn 2019

- TEESMC
- All system resources are associated with a

capability - etc.

- Capabilities are ovwned by a CNode (capability

node)

- Capabilities can be granted to and revoked

from other CNoOodes

Main thread

PROCESS A

THREAD

CHANNEL

Secure Kermel
Capabilities Example

Grant

CNODE

THREAD

VSROOT

CNODE

PMEM

VSROOT

CHANNEL

Address space

Grant

Grant

Grant

PROCESS B

CHANNEL

~

Stack, heap, etc.)

hmsysmgr

communications

~\

J

NManagers

| WVanagers
e [he only S-ELO processes allovwed to ask the
secure kernel to perform critical operations

" e.g. mapping physical secure memory

e Can be considered as extensions of the

MmMicro-kernel n userliand

NManagers

| Hile manager (hmfilemgr)

e Manages and exposes two virtual file

systems

RAMFES

e« Embedded archive

e Contains tasks binaries
TAFS

e Temporary storage for trustlets

and libraries

| System manager (hmsysmagr)

e IMplements most of the
Tfundamental features of the OS

[.
Process creation

] -
Virtual memory management

[|
AcCccess control

" etc.

| ommunicate with other processes

through IPCs

| Hermissions of the calling process are

checked n the command handlers

Tasks & Drivvers

[Hquivalent to the init process on Unix-based

systems

| Handle normal world commands
e NMailbox/shared memory registration

e Loading of trusted applications
" Decryption with a private key “derived’” from

the provisioned key

u

Signature verification with a hardcoded

public key
e Session management

e Forwarding of commands to trusted applications

[DRV_TIMER

e Nanages secure timers

[GKTEKEEPER

e Gatekeeper mplementation

[KEYMASTER

e Keymaster mplementation

| PERMISSION_SERVICE
e Permissions system for RPMB,
SSA and TUI
| PLATDRYVY
e Platform drivers

e INnterrupts, crypto engine, secure

element, fingerprint sensor, etc.

Tasks & Drivvers

[(RPMB

e RPMB filesystem

e Uses a normal world agent

[SEA
e Trusted Storage API

® Uses a normal world agent

[TALOADER & TARUNNER

e glue between GlobalPlatform

and OS-level APIs

[TPl
e Trusted User Interface

Implementation

Tasks & Drivvers

| NMNMulnerability research

IPC command handlers

Permissions system

There is a library for mplementing

security access controls

Tasks have credentials and security
contexts, that can be mapped to

permissions

Most permissions are static, but can

also be added dynamically

Permissions are checked within the

IPC command handlers

| Mulnerabilities identified

TUI Task

" Heap buffer overflows

Platdrv Task

" Arbitrary memory read/wvrite

H -
Non-secure physical memory read

" Heap buffer overflows

" Heap pointer leak

Only specific tasks can reach the

vulnerable IPC commmand handlers

Trusted Applications

| $ecure world userland applications

| Peveloped by Huaweil and 3rd parties to

provide services to the Normal world

| Wse the standard GlobalPlatform APIs, as

well as some proprietary extensions

| Generally loaded from the Normal World

e Stored in the Android system/vendor

partitions or embedded N APKs

e Signed and encrypted

Trusted Applications

[] Trusted Applications Properties

- Single instance, multi session, instance keep alive, etc.

[] Create and Destroy [] Open and Close Sessions [] Command Invocation
- NManage the global state - Manage the per—-CA state - Handles a request coming from a CA

] and sends back a response
- Declare the allovwed CAsS list P

Handler #1 Handler #n Handler #1 Handler #n Handler #1 Handler #n

Trusted Applications

| Trusted applications embed a list of authorized APKs/binaries
e APK: package name + signing public key

e Binaries: file path + user id + hash of code pages

P Chain of trust
e [he kernel is assumed to be uncompromised
e [he kernel authenticates J[@@Cd

= teeCd forvwards inNnformation about the binaries

Trusted Applications

| TPesign choices [oftware Mitigations

e NX

e Secure functions (e.g. memey_S)

e RelRO
e Parameter buffers are copied to

prevent inter—-world TOCTOU = Stack cookies

] e ASLR
e Robust and generic Parcel-based

system to handle data in a safe Used to be bypassable with an

manner arbitrary read

) The TA base address was written at a
e Output buffer sizes can only be

fixed address by the loader
reduced

Only works for the ELF sections,

e EtcC. stack and heap are still randomized

Trusted Applications

| Reverse engineering: —40 trustlets, | Yulnerabilities

mainly AArch32 ELF but some AArche4a
e UnNnchecked parameter types

| | he attack surface mostly boils dowvvn
Y e Stack & heap buffer overflows

to the command handlers

e INformation leaks

| Huzzing: developed a custom fuzzer

based on Uﬂ/.CO/ﬁﬂ/AFL++ e OOB accesses

e Obstacles: stubbing the GP APIs e Race conditions (mMulti session

ELF relocations, getting a backtrace binaries only)

e Limitations: stateless, only /O\/\/ e EtcC.

haﬂg/hg f/ﬁU/.ZLS can be found
| Mostly in third party TAs

Trusted Applications

[HWPSIRT-2021-63568

- Cmo’_Uf?\/\//'a,O can be used to write Stru::i:” i
arbitrary data to any files in the void*~ buffer:
sec_storage_data/FPKl/ folaer of the 3 memrer: ’

struct {

secure file system

uENct3d2 T© a;
SN Nah CH=JL N © =
3 wvalue ;

[HWPSIRT-2021-80349

3> TEE_ Param;g

e geﬂe/’afe_/@yb/Ob copies semi user-— == meman[leE TPA [Evas e e TR E [T E s AR e T e

wvord sessionContextt

controlled data into the output

urENct3d32 © commandilD,

parameter DA/aMS/3]/ GEnEa2 e paramTypes.

TEE Param params[[4]

e Should be a memref, but there is a

code path where it can be a value

Trusted Applications

[JArbitrary read

- WVWrite a ““fake” keyblob to the SFS using a

previously imported all-zeroes AES key

Trusted Applications

[JArbitrary read

- WVWrite a ““fake” keyblob to the SFS using a

previously imported all-zeroes AES key (=

Trusted Applications

[JArbitrary read

- WVWrite a ““fake” keyblob to the SFS using a

previously imported all-zeroes AES key (=

- Call Cmd_get on the “fake” keyblob to read

data from a user—-controlled offset

(keyvyblob—=magnmc 534554

kevblob—>=versiion 12C

kevblob—>==kevyvblob smze kevblob size) {

memcpy s
paramsf[1] -memref_buffer .,
paramsf[[i1l] -memrefFf_.size ,
<=AVdel Nole kevblob—>==key ofF,

XAVdel FeloPold X AVAEE KE-la D 2=

Trusted Applications

[JArbitrary read

- WVWrite a ““fake” keyblob to the SFS using a

previously imported all-zeroes AES key (=

- Call Cmd_get on the “fake” keyblob to read

data from a user—-controlled offset

(keyvyblob—=magnmc 534554

kevblob—>=versiion 12C

kevblob—>==kevyvblob smze kevblob size) {

memcpy s
paramsf[1] -memref_buffer .,
paramsf[[i1l] -memrefFf_.size ,
<=AVdel Nole kevblob—>==key ofF,

XAVdel FeloPold X AVAEE KE-la D 2=

Trusted Applications

[JArbitrary read

- WVWrite a ““fake” keyblob to the SFS using a

previously imported all-zeroes AES key (=

- Call Cmd_get on the “fake” keyblob to read

data from a user—-controlled offset

" First read adjacent heap data to get a leak

of the object’s address

Then you can read at arbitrary addresses,

and break ASLR in particular

Trusted Applications

[JArbitrary read

- WVWrite a ““fake” keyblob to the SFS using a

previously imported all-zeroes AES key

- Call Cmd_get on the “fake” keyblob to read

data from a user—-controlled offset

" First read adjacent heap data to get a leak

of the object’s address

Then you can read at arbitrary addresses,

and break ASLR in particular

[JArbitrary vvrite

" Use it to overwrite a function pointer (e.g.

file operations structure) to create a better

arbitrary wvrite primitive

Can also use it to call arbitrary functions

Open

Read

OoOx123456738

OxdeadbeefrT

Conclusion

[All vulnerabilities were reported to HU@W@/. BUQ’ BOU//?U/ PfOQ’fam and fixed in updates released prior to this presentation

[VYVvell thought-out security architecture
e Defense-in—-depth measures
e Privilege Iimitations and access control
e RoOobust i mplementations (secure coding practices)

e NMistakes can still happen, but are mitigated

[Binary encryption is a double edged-sword
e Harder for an attacker to get access and find bugs

e DBut teams with the resources to break the encryption layer might be less likely to share their findings

[Wpcoming blogposts with the missing details

e https://blog.impalabs.com

Thank you!

