
Hexacon 2022

About Us

Maxime Peterlin – @lyte__
Security researcher & Co-founder

Alexandre Adamski – @NeatMonster_
Security researcher & Co-founder

Impalabs – @the_impalabs
French offensive security company
Reverse engineering, vulnerability research, exploit development

Website – https://impalabs.com
Blog – https://blog.impalabs.com

https://twitter.com/lyte__
https://twitter.com/NeatMonster_
https://twitter.com/the_impalabs
https://impalabs.com
https://blog.impalabs.com

Conclusion

Trusted Applications

Trusted OS

Secure Kernel

Secure MonitorSecure Monitor

Hypervisor

Bootchain

Outline

Introduction

Bootchain

Hypervisor

Conclusion

Secure Kernel

Trusted OS

Trusted Applications

Introduction

Introduction

Android Device Architecture
Kernel-Based Security

Access control to resources from
user space is enforced by the kernel

• Address space isolation

• Preemptive multitasking

• Peripherals access restriction

Single point of failure

• Breaching kernel defenses results
in full system compromise

KERNEL

PROC PROCPROC

NORMAL WORLD

SVC

SVC

HVC

Android Device Architecture
Security Hypervisor

CPU virtualization

• Traditionally used to execute multiple operating
systems in parallel on the same device

• Leveraged on Android devices to enhance
system security instead

ARM virtualization extensions

• Additional privilege level

• Memory access restrictions

• Exceptions interception

Protects critical data structures at run time

• Credentials, security contexts, page tables, etc.

KERNEL

HYPERVISOR

PROC PROCPROC

NORMAL WORLD

SMC

SVC

SMC

SVC

HVC

Android Device Architecture
TrustZone for Cortex-A

System-wide hardware separation

• An untrusted Normal World and a trusted
Secure World

• Access to secure hardware resources from
non-secure software is prohibited

• Inter-world communications through the
Secure Monitor

TrustZone and Secure Boot are used to create a
Trusted Execution Environment (TEE)

• Authentication (e.g. for encrypted filesystem)

• Mobile payment, secrets management, etc.

• Content management (DRM)

KERNEL

HYPERVISOR

PROC PROCPROC

SECURE KERNEL

APP APPAPP

SECURE MONITOR

NORMAL WORLD SECURE WORLD

Android Device Architecture
Secure Boot

Each stage cryptographically checks that the
next image is authorized to run

• Creates a chain of trust

• Starting from the root of trust, an immutable
component

Prevents unauthorized or modified software from
executing on the device

OEMs implement additional features

• Anti-rollback mechanism

• Emergency boot over USB

• Boot images encryption

BOOTROM

LOADER #1

LOADER #N

KERNEL HYPERVISOR TRUSTZONE

USB LOADER

Loads from UFS,
verifies & executes

Loads from USB,
verifies & executes

Boot Chain

Boot Chain
Overview

Security mechanisms

• Secure boot: prevents replacing or modifying
boot chain images

• Bootloader lock: prevents reflashing the
partitions or running a custom kernel

Bootstrapping challenges

• All critical partitions are encrypted

• Can’t talk directly to targeted components

• Countermeasures in kernel and userland

Getting control over the boot chain

• High entry cost: we need to find a
vulnerability first

XLOADER

FASTBOOT

BOOTROM

KERNEL

LPMCU
(Cortex-M)

ACPU
(Cortex-A)

Boot Chain
First Research Device

P30 Lite (Kirin 710 chipset)

• Xloader is signed but not encrypted, thus
can be retrieved from a firmware update

• Found a vulnerability in its
implementation of xmodem, the USB
recovery protocol

The next stage binary’s base address is
not verified

Can be leveraged to modify Xloader
itself (all memory is RWX)

Shorting a test point on the device
activates the download mode feature

XLOADER

FASTBOOT

BOOTROM

KERNEL

Boot Chain
Second Research Device

P40 Lite (Kirin 810 chipset)

• Xloader is signed and encrypted

• But it is also affected by the
xmodem vulnerability that needs to
be exploited blindly

• Decryption key no longer stored in
fuses and is only accessible to the
crypto engine

Firmware images are retrieved
by using the device as an oracle

XLOADER

FASTBOOT

BOOTROM

KERNEL

Boot Chain
Third Research Device

P40 Pro (Kirin 990 chipset)

• Xloader is signed, encrypted,
but not vulnerable to the
xmodem bug

• Fastboot is split into a privileged
and an unprivileged component

• Another vulnerability is needed
to get control over the boot chain

XLOADER

BOOTROM

KERNEL

FB BL2

Boot Chain
How to Tame Your Unicorn

Talk presented at BlackHat USA 2021 by Taszk Security Labs

• Revealed multiple Xloader and BootROM bugs

• Including the Xloader vulnerability that we had discovered

CVE-2021-22434: Head Chunk Resend State Machine Confusion

• Internal state is not reset when sending an incorrect payload address

• BootROM code execution can be achieved from this arbitrary write primitive

• Must be exploited blindly on the Kirin 990 chipset

Dump Xloader using the Flash Patch and Breakpoint unit of the LPMCU

Huawei “fixed” the BootROM bugs by burning a fuse to disable the USB recovery mode

Boot Chain
Continuation of Execution

Similarly to “CHECKM30” presented at MOSEC 2021 by Pangu Team

XLOADER FASTBOOTBOOTROM

Patches
Remove the address

and length checks
Disable decryption and

signature verification

Patches
Change boot mode from

USB to UFS
Ignore the Android Verified

Boot failure

Steps
Send patched Xloader to the

BootROM
Force its execution by

overwriting a return address

Steps
Send patched Fastboot to

Xloader
Patches allow execution to

continue normally

Security Hypervisor

Security Hypervisor
Introduction

Called Huawei Hypervisor Execution Environment (HHEE)

• Similar to uH/RKP on Samsung’s Exynos or QHEE on
Qualcomm’s Snapdragon

Main Security Features

• Prevents arbitrary changes to the kernel read-only data,
its page tables, SELinux structures, etc.

• Keeps a read-only copy of tasks’ information to detect
privilege escalation on the next syscall or file access

• Ensures only the pages belonging to the kernel and
modules code segment can be executed at EL1

• Makes critical physical memory regions (e.g. sensorhub,
secure npu, modem, etc.) inaccessible to EL0 and EL1

• Enables execute-only user space memory that is
unreadable from the kernel

CODE CODE CODE CODE CODE CODE CODE CODE

CODE CODE CODE CODE
RO

DATA
RO

DATA
RO

DATA
RO

DATA

PAGE
TABLE

PAGE
TABLE

PAGE
TABLE

SELINUX SELINUX SELINUX
UID
GID

ADDR
LIMIT

DATA DATA DATA DATA DATA DATA DATA DATA

DATA DATA DATA DATA DATA DATA DATA DATA

DATA DATA DATA DATA DATA DATA DATA DATA

CODE CODE CODE CODE CODE CODE
RO

DATA
RO

DATA

DATA DATA DATA DATA DATA DATA DATA DATA

Kernel

Module

PAGE PAGE

PAGEPAGE

Executable

Write-Mediated Read-Write

Read-Only

Security Hypervisor
Second Stage of Address Translation

Virtual address translation is
extended with a second stage

• The VA is first translated into an
Intermediate Physical Address

• The IPA is then translated into a PA

It uses a second set of page tables
under the control of the hypervisor

• These page tables can apply
additional access control

The hypervisor also has its own page
tables for its virtual address space

TRANSLATION
TABLES

OS (EL1)

APP (EL0)

HYP (EL2)

MEMORY

PERIPHERALS

MEMORY

PERIPHERALS

MEMORY

PERIPHERALS

TRANSLATION
TABLES

TTBRn_EL1 VTTBR0_EL2

TRANSLATION
TABLES

TTBR0_EL2

VIRTUAL
MEMORY

INTERMEDIATE
PHYSICAL MEMORY

PHYSICAL
MEMORY

Security Hypervisor
Second Stage Limitations

MemAttr TypeS2APSHAFFnXS

5 2 1 06789101147

RES PBHA IGNORED XN Cont DBM

515253545558596263 50

OARES0

48 12

XN[1] XN[0] Access

0 0 Executable at EL0 and EL1

0 1 Executable only at EL0

1 0 Not executable at EL0 or EL1

1 1 Executable only at EL1

S2AP EL1 and EL0 Access

00 None

01 Read-only

10 Write-only

11 Read/write

XN[1] XN[0] Access

0 RES0 Executable at EL0 and EL1
1 RES0 Not executable at EL0 or EL1

With FEAT_XNX Without FEAT_XNX

Stage 2 permissions cannot distinguish between EL0 and EL1 for:

• Read and write accesses

• Executability, if FEAT_XNX is not implemented

It is the main reason stage 1 page tables also need to be controlled by the hypervisor

Security Hypervisor
Kernel Page Tables

Initial processing

• Traps changes made to the TTBR1_EL1 and SCTRL_EL1 system registers

• Performs a page table walk and ensures every descriptor is sane and coherent

e.g. descriptors with the contiguous bit set actually point to contiguous memory

• Enforces EL0/EL1 distinction for read-write accesses and executability

By default, kernel pages are set non executable at EL1 and non accessible at EL0

Changes monitoring

• Kernel page tables are set as read-only in the second stage

Except when permissions can be enforced at previous table level (PXNTable/APTable)

• A write to a stage 1 descriptor or a translation fault during a page table walk raises an exception

Handled by the hypervisor to ensure modifications are permitted and update stage 2 accordingly

Security Hypervisor
Software Attributes

Hypervisor Software Attributes

• Bitfield stored in bits [58:55] of a stage 2 descriptor

• Contains usage information about the underlying memory region

• Used to prevent disallowed changes to protected memory

e.g. making a OS read-only page writable again

Rules enforced while modifying them

• Only unmarked descriptors can be marked

• To unmark a descriptor, the current marking must be provided

MemAttr TypeS2APSHAFFnXS

5 2 1 06789101147

RES PBHA IGNORED XN Cont DBM

515253545558596263 50

OARES0

48 12

Attrs Description

0b0000 Unmarked

0b0100 Level 0 Page Table

0b0101 Level 1 Page Table

0b0110 Level 2 Page Table

0b0111 Level 3 Page Table

0b1000 OS Read-Only

0b1001 OS Module Read-Only

0b1010 Hyp-mediated OS Read-Only

0b1011 Hyp-mediated OS Module Read-Only

0b1100 Shared Obj Protection Execute-Only

Security Hypervisor
Methodology

Extensive reverse engineering

• Static analysis
68 KB raw binary
AArch64 code
295 functions
No symbols
~10 log strings

• Analysis can be augmented with information
coming from external sources

HVC names from the kernel source code
Armv8-A Architecture Reference Manual

Identifying the attack surface

• HVC and SMC handlers

• Faulting memory accesses

• Trapped system registers accesses
e.g. SCTLR_EL1, TCR_EL1, etc.

• Memory shared with the kernel

Comparing the security hypervisors of different
OEMs might highlight implementation flaws

Security Hypervisor
Vulnerability

CVE-2021-39979

• Logging system use a control structure located in shared memory that is
accessible to the kernel

• Pointer, offset and sizes fields are all unchecked

• We can write log strings at any virtual address that is mapped into the hypervisor

DATA

H E L L O _ W O R L D \n

HEADER

head_size data_size

curr_off

data_ptr

Security Hypervisor
Exploitation

Constrained write primitive

• The log string being written is not user-controlled

• Since the buffer is circular and written character by
character

Only the last byte will remain in memory if we set
the data size of the buffer to 1
It’s always the new line character: \n (0xA)

Linear heap allocator

• Heap region has a fixed base address and size
The current offset is stored in a global variable

• The allocation function assumes the offset value is
sane (smaller than the heap size)

If it isn’t, an integer underflow happens and the
allocator returns out-of-bounds memory

• Right after the heap is a kernel-accessible region

void malloc(uint64_t size) {
 if (HEAP_SIZE - heap_off < pad + size)
 return 0;
 heap_off += pad + size;
 return HEAP_ADDR + heap_off + pad;
}

DATA

\n

HEADER

head_size data_size = 1

curr_off = head_size

data_ptr = target

Security Hypervisor
Exploitation

Getting code execution
heap_off 0x00000000

Global Variables

remaining 0x005BA400

Heap Regionheap_ptr
0x12F14C00

0x134CF000

Security Hypervisor
Exploitation

Getting code execution

• Step 1: Fill up the heap to its maximum by
triggering stage 2 page tables allocations

heap_off 0x005BA400

Global Variables

remaining 0x00000000

Heap Region

heap_ptr

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

0x12F14C00

0x134CF000

Security Hypervisor
Exploitation

Getting code execution

• Step 1: Fill up the heap to its maximum by
triggering stage 2 page tables allocations

• Step 2: Use the constrained write primitive to
move the offset right past the end of heap

heap_off 0x005BA40A

Global Variables

remaining 0xFFFFFFF6

Heap Region

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table
heap_ptr

0x12F14C00

0x134CF000

Security Hypervisor
Exploitation

heap_off 0x005BC400

Global Variables

remaining 0xFFFFE000

Heap Region

S2 Page Tableheap_ptr

Getting code execution

• Step 1: Fill up the heap to its maximum by
triggering stage 2 page tables allocations

• Step 2: Use the constrained write primitive to
move the offset right past the end of heap

• Step 3: Trigger a last stage 2 page table
allocation that is made out-of-bounds
because of the integer underflow

0x12F14C00

0x134CF000

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

S2 Page Table

Security Hypervisor
Exploitation

Getting code execution

• Step 1: Fill up the heap to its maximum by
triggering stage 2 page tables allocations

• Step 2: Use the constrained write primitive to
move the offset right past the end of heap

• Step 3: Trigger a last stage 2 page table
allocation that is made out-of-bounds
because of the integer underflow

S2 Page Table

0x10000000 RO0x10000000

0x10001000 RO0x10001000

0x10002000 RO0x10002000

… ……

0x101FD000 RO0x101FD000

0x101FE000 RO0x101FE000

0x101FF000 RO0x101FF000

HVC Handler

mov x1, #8
mov x0, x8
str x1, [x8]

Security Hypervisor
Exploitation

Getting code execution

• Step 1: Fill up the heap to its maximum by
triggering stage 2 page tables allocations

• Step 2: Use the constrained write primitive to
move the offset right past the end of heap

• Step 3: Trigger a last stage 2 page table
allocation that is made out-of-bounds
because of the integer underflow

• Step 4: Change the page table from the
kernel to remap the hypervisor as read-write

S2 Page Table

0x10000000 RW0x12F00000

0x10001000 RW0x12F01000

0x10002000 RW0x12F02000

… ……

0x101FD000 RW0x130FD000

0x101FE000 RW0x130FE000

0x101FF000 RW0x130FF000

HVC Handler

mov x1, #8
mov x0, x8
str x1, [x8]

Security Hypervisor
Exploitation

Getting code execution

• Step 1: Fill up the heap to its maximum by
triggering stage 2 page tables allocations

• Step 2: Use the constrained write primitive to
move the offset right past the end of heap

• Step 3: Trigger a last stage 2 page table
allocation that is made out-of-bounds
because of the integer underflow

• Step 4: Change the page table from the
kernel to remap the hypervisor as read-write

• Step 5: Patch the hypervisor memory and get
code execution at EL2 from EL1

e.g. targeting one of the HVC handlers

HVC Handler

mrs x0, CurrentEL
str x0, [x8]
ret

S2 Page Table

0x10000000 RW0x12F00000

0x10001000 RW0x12F01000

0x10002000 RW0x12F02000

… ……

0x101FD000 RW0x130FD000

0x101FE000 RW0x130FE000

0x101FF000 RW0x130FF000

TrustZone

Java
Applications
/dev/binder
ITeecService

/dev/hwbinder
ILibteecGlobal

@tc_ns_socket

/dev/tc_ns_client

SMC

Native
Processes

tee_auth_daemon

libteec@3.0-service

libteec_vendor

libteec_vendor

Kernel Driver

FS MISC RPMB SOCKET

TEEK
Client API

NORMALWORLD

SMC

TA TA TA TA TA

libc libgm libtee libvendor

Platdrv Perm
Serv RPMB SSA TUI

GTask

hmsysmgr hmfilemgr

Secure Kernel

IPC

IPC

SVC

SECUREWORLD

SMCHandlers TEE-OS
DispatcherForward to customTEEOSHandler

SECUREMONITOR

Shared
Non-Secure
Memory

TrustZone
Overview

TrustZone
Normal World Overview

Java applications & native processes

• Main users of secure world features

• But not privileged enough to send requests to the Secure
World

Use the kernel as a proxy

Steps to send messages to the Secure World from userland

• Requests are received by the userland daemon teecd

First go through tee_auth_daemon for Java applications

• And then forwarded to the kernel through the character device
tc_ns_client

Implements the agents (filesystem, networking, etc.)

Provides a shared library to communicate with it

• The kernel then sends the requests to the Secure World
through an SMC

Each interface has its own SELinux context to restrict access

Java
Applications
/dev/binder
ITeecService

/dev/hwbinder
ILibteecGlobal

@tc_ns_socket

/dev/tc_ns_client

SMC

Native
Processes

tee_auth_daemon

libteec@3.0-service

libteec_vendor

teecd

Kernel Driver

FS MISC RPMB SOCKET

TEEK
Client API

NORMALWORLD

Shared
Non-Secure
Memory

SMC

TA TA TA TA TA

libc libgm libtee libvendor

Platdrv Perm
Serv RPMB SSA TUI

GTask

hmsysmgr hmfilemgr

Secure Kernel

IPC

IPC

SVC

SECUREWORLD

SMCHandlers TEE-OS
DispatcherForward to customTEEOSHandler

SECUREMONITOR

Java
Applications
/dev/binder
ITeecService

/dev/hwbinder
ILibteecGlobal

@tc_ns_socket

/dev/tc_ns_client

SMC

Native
Processes

tee_auth_daemon

libteec@3.0-service

libteec_vendor

teecd

Kernel Driver

FS MISC RPMB SOCKET

TEEK
Client API

NORMALWORLD

Shared
Non-Secure
Memory

SMC

TA TA TA TA TA

libc libgm libtee libvendor

Platdrv Perm
Serv RPMB SSA TUI

GTask

hmsysmgr hmfilemgr

Secure Kernel

IPC

IPC

SVC

SECUREWORLD

SMCHandlers TEE-OS
DispatcherForward to customTEEOSHandler

SECUREMONITOR

TrustZone
Secure World Overview

Secure Monitor

• Handles SMCs and forwards requests to
the trusted OS

Trusted OS

• Based on a micro-kernel architecture

• Trusted applications running on top of
privileged tasks and drivers

Secure Monitor

Secure Monitor
Introduction

Executes at EL3, the highest privilege level

• Performs privileged operations and manages
critical hardware peripherals

e.g. efuses, power controls, RPMB, etc.

• Bridge between the Normal and Secure
Worlds

Forwards requests between the kernel and
the trusted OS

Huawei’s implementation based on the ARM
Trusted Firmware (ATF)

• Open source, probably heavily reviewed

Huawei implemented additional runtime services

• These handlers are more likely to be vulnerable

Java
Applications
/dev/binder
ITeecService

/dev/hwbinder
ILibteecGlobal

@tc_ns_socket

/dev/tc_ns_client

SMC

Native
Processes

tee_auth_daemon

libteec@3.0-service

libteec_vendor

teecd

Kernel Driver

FS MISC RPMB SOCKET

TEEK
Client API

NORMALWORLD

SMC

TA TA TA TA TA

libc libgm libtee libvendor

Platdrv Perm
Serv RPMB SSA TUI

GTask

hmsysmgr hmfilemgr

Secure Kernel

IPC

IPC

SVC

SECUREWORLD

Shared
Non-Secure
Memory

SMCHandlers TEE-OS
DispatcherForward to customTEEOSHandler

SECUREMONITOR

Secure Monitor
Vulnerability

CVE-2021-39994

• Secure Monitor acts as a pass-through for the kernel to interact with
the Secure Element (SE)

• A response from the SE uses the user_data structure where the user
controls:

The address of user_data, that contains the response metadata

The address and size of the reponse data: user_data.addr and
user_data.size

• Bounds check

The user-provided addresses for user_data and user_data.addr
must be in a specific world-shared memory buffer

However, in one of the requests, the check is missing for
user_data

• Information about the SE’s response is thus written at a user-
controlled address

The response code 0xAABBCC55 at offset 4

The response size in the range 0x0-0xC at offset 0xC

The response data address user_data.addr, which is checked

Body Level One

• Body Level Two

Body Level Three

• Body Level Four

• Body Level Five

struct {
 uint32_t unkn;
 uint32_t code;
 uint32_t addr;
 uint32_t size;
} user_data;

uint32_t user_size;

/* check(user_data, user_size) is missing */
void on_reply(uint32_t addr, uint32_t size) {
 user_data.code = 0xAABBCC55;
 user_data.size = min(size, user_size);
 if (check(user_data.addr, user_data.size))
 memcpy(user_data.addr, addr, user_data.size);
}

Global Variables

cma_size 0x10000000

cma_addr 0x40000000

Data overwritten using the SE
responsemetadata

Secure Monitor

Step 1: Use the response metadata to disable the check on the
shared memory region

• Allows copying the response data at an arbitrary
user_data.addr

• Data isn’t controlled either, but gives us more options

Exploitation

Global Variables

cma_size 0x10000000

cma_addr 0x40000000

Data overwritten using the SE
responsemetadata

Global Variables

cma_size 0xAABBCC55

cma_addr 0xC

Data overwritten using the SE
responsemetadata

Secure Monitor

Step 1: Use the response metadata to disable the check on the
shared memory region

• Allows copying the response data at an arbitrary
user_data.addr

• Data isn’t controlled either, but gives us more options

Exploitation

Global Variables

cma_size 0xAABBCC55

cma_addr 0xC

SMCHandlers

handler ptr #2 0x14204A14

... ...

handler ptr #1 0x14204A1C

0x14204A1C
[...]

Handler #1

ArbitraryCall Gadget

LDR X2, [X2,#0xB8]
CBNZ X2, loc_14204AA0
...
BLR X2

0x14204A7C

Secure Monitor

Step 1: Use the response metadata to disable the check on the
shared memory region

• Allows copying the response data at an arbitrary
user_data.addr

• Data isn’t controlled either, but gives us more options

Step 2: Hijack a SMC handler pointer

• 1-byte overwrite by specifying a response size of 1

• Change an existing function pointer to an interesting gadget

BLR X2 —> arbitrary function call

Exploitation

Global Variables

cma_size 0xAABBCC55

cma_addr 0xC

SMCHandlers

handler ptr #2 0x14204A14

... ...

handler ptr #1 0x14204A7C

0x14204A1C
[...]

Handler #1

ArbitraryCall Gadget

LDR X2, [X2,#0xB8]
CBNZ X2, loc_14204AA0
...
BLR X2

0x14204A7C

Data overwritten using the SE
response data

Secure Monitor

Step 1: Use the response metadata to disable the check on the
shared memory region

• Allows copying the response data at an arbitrary
user_data.addr

• Data isn’t controlled either, but gives us more options

Step 2: Hijack a SMC handler pointer

• 1-byte overwrite by specifying a response size of 1

• Change an existing function pointer to an interesting gadget

BLR X2 —> arbitrary function call

Exploitation

Global Variables

cma_size 0xAABBCC55

cma_addr 0xC

SMCHandlers

handler ptr #2 0x14204A14

... ...

handler ptr #1 0x14204A7C

0x14204A1C
[...]

Handler #1

ArbitraryCall Gadget

LDR X2, [X2,#0xB8]
CBNZ X2, loc_14204AA0
...
BLR X2

0x14204A7C

ArbitraryWrite Gadget

STR W1, [X0]
CSINC W0, W21, WZR, NE
LDP X19, X20, [SP,#0x10]
LDP X21, X22, [SP,#0x20]
LDP X23, X24, [SP,#0x30]
LDP X29, X30, [SP],#0x50
RET

0x1420CF88

Data overwritten using the SE
response data

Secure Monitor

Step 1: Use the response metadata to disable the check on the
shared memory region

• Allows copying the response data at an arbitrary
user_data.addr

• Data isn’t controlled either, but gives us more options

Step 2: Hijack a SMC handler pointer

• 1-byte overwrite by specifying a response size of 1

• Change an existing function pointer to an interesting gadget

BLR X2 —> arbitrary function call

Step 3: Call a write gadget to create stable read and write
primitives

Exploitation

Global Variables

cma_size 0xAABBCC55

cma_addr 0xC

SMCHandlers

handler ptr #2 0x14204A14

... ...

ArbitraryWrite 0x14205E74

0x14204A1C
[...]

Handler #1

ArbitraryCall Gadget

LDR X2, [X2,#0xB8]
CBNZ X2, loc_14204AA0
...
BLR X2

0x14204A7C

ArbitraryWrite Gadget

STR W1, [X0]
CSINC W0, W21, WZR, NE
LDP X19, X20, [SP,#0x10]
LDP X21, X22, [SP,#0x20]
LDP X23, X24, [SP,#0x30]
LDP X29, X30, [SP],#0x50
RET

0x1420CF88

Secure Monitor

Step 1: Use the response metadata to disable the check on the
shared memory region

• Allows copying the response data at an arbitrary
user_data.addr

• Data isn’t controlled either, but gives us more options

Step 2: Hijack a SMC handler pointer

• 1-byte overwrite by specifying a response size of 1

• Change an existing function pointer to an interesting gadget

BLR X2 —> arbitrary function call

Step 3: Call a write gadget to create stable read and write
primitives

Exploitation

Global Variables

cma_size 0xAABBCC55

cma_addr 0xC

SMCHandlers

Arbitrary Read 0x142013F4

... ...

ArbitraryWrite 0x14205E74

Secure Monitor

Step 1: Use the response metadata to disable the check on the
shared memory region

• Allows copying the response data at an arbitrary
user_data.addr

• Data isn’t controlled either, but gives us more options

Step 2: Hijack a SMC handler pointer

• 1-byte overwrite by specifying a response size of 1

• Change an existing function pointer to an interesting gadget

BLR X2 —> arbitrary function call

Step 3: Call a write gadget to create stable read and write
primitives

Exploitation

Global Variables

cma_size 0xAABBCC55

cma_addr 0xC

SMCHandlers

Arbitrary Read 0x142013F4

... ...

ArbitraryWrite 0x14205E74

MONITORMEMORY

Scanmemory to find themonitor
page tables

Secure Monitor

Step 1: Use the response metadata to disable the check on the
shared memory region

• Allows copying the response data at an arbitrary
user_data.addr

• Data isn’t controlled either, but gives us more options

Step 2: Hijack a SMC handler pointer

• 1-byte overwrite by specifying a response size of 1

• Change an existing function pointer to an interesting gadget

BLR X2 —> arbitrary function call

Step 3: Call a write gadget to create stable read and write
primitives

Step 4: Double map the Secure Monitor because of WXN

• Locate the secure monitor page tables

• Add new entries where the memory is read-write

• Patch the code to gain code execution

Exploitation

Global Variables

cma_size 0xAABBCC55

cma_addr 0xC

SMCHandlers

Arbitrary Read 0x142013F4

... ...

ArbitraryWrite 0x14205E74

MONITORMEMORY

0x14000000 RX0x14002000

0x14001000 RX0x14002000

0x14002000 RX0x14002000

...

M
o
n
ito
r
P
ag
e
Tab
le
s

MONITORMEMORY

Secure Monitor

Step 1: Use the response metadata to disable the check on the
shared memory region

• Allows copying the response data at an arbitrary
user_data.addr

• Data isn’t controlled either, but gives us more options

Step 2: Hijack a SMC handler pointer

• 1-byte overwrite by specifying a response size of 1

• Change an existing function pointer to an interesting gadget

BLR X2 —> arbitrary function call

Step 3: Call a write gadget to create stable read and write
primitives

Step 4: Double map the Secure Monitor because of WXN

• Locate the secure monitor page tables

• Add new entries where the memory is read-write

• Patch the code to gain code execution

Exploitation

Global Variables

cma_size 0xAABBCC55

cma_addr 0xC

SMCHandlers

Arbitrary Read 0x142013F4

... ...

ArbitraryWrite 0x14205E74

MONITORMEMORY

0x14000000 RX0x14000000

0x15000000 RW0x14000000

0x15001000 RW0x14001000

0x15002000 RW0x14002000

0x14001000 RX0x14001000

0x14002000 RX0x14002000

...

...

M
o
n
ito
r
P
ag
e
Tab
le
s

Secure Monitor

Step 1: Use the response metadata to disable the check on the
shared memory region

• Allows copying the response data at an arbitrary
user_data.addr

• Data isn’t controlled either, but gives us more options

Step 2: Hijack a SMC handler pointer

• 1-byte overwrite by specifying a response size of 1

• Change an existing function pointer to an interesting gadget

BLR X2 —> arbitrary function call

Step 3: Call a write gadget to create stable read and write
primitives

Step 4: Double map the Secure Monitor because of WXN

• Locate the secure monitor page tables

• Add new entries where the memory is read-write

• Patch the code to gain code execution

Exploitation

Trusted OS

TA TA TA TA TA

libc libgm libtee libvendor

Platdrv Perm
Serv RPMB SSA TUI

GTask

hmsysmgr hmfilemgr

Secure Kernel

IPC

IPC

SECUREWORLD

Trusted OS
Introduction

Huawei Trusted OS based on a micro-kernel
architecture

• Secure Kernel (S-EL1)

Responsibilities kept to the bare minimum

Critical operations are performed through an
API restricted to Managers in userland

• Processes (S-EL0)

Managers: privileged processes providing
the core functionality of the trusted OS

Tasks & Drivers: implement additional OS
services used by the trusted applications

Trusted Applications: Huawei and 3rd party
applications providing services to the REE

S-EL0

S-EL1

Trusted OS
Boot Process

TEEOS
LOADER

SECURE
KERNEL

SYSTEM
MANAGER

FILE
MANAGER

GLOBAL
TASK

S-EL0
PLATDRV

DRV_TIMER

TEESMCMGR

TEEOS
TASKS

TEEOS CPIO Archive

FILEMGR RAMFS Archive

TA TA TA TA TA

libc libgm libtee libvendor

Platdrv Perm
Serv RPMB SSA TUI

GTask

hmsysmgr hmfilemgr

Secure Kernel

IPC

IPC

SECUREWORLD

Secure Kernel
Introduction

Only performs low-level operations, such
as:

• Physical memory allocation

• Inter-process communication

• Process scheduling

• Access control management

Everything else is implemented in userland

SVCs for critical operations restricted to
the Managers

Secure Kernel
Capabilities

Capability-based OS
• Privileges are divided into distinct units called

capabilities
• Provides fine-grained access to kernel

resources

Huawei Implementation
• Most likely inspired by seL4
• Capabilities system described in a patent filed

in 2019
• All system resources are associated with a

capability
• Capabilities are owned by a CNode (capability

node)
• Capabilities can be granted to and revoked

from other CNodes

Capability type examples

• CNode

• Thread

• PMEM

• Channel / Notification / Message

• IRQCTRL / IRQHDLR

• VSRoot

• Timer

• TEESMC

• etc.

Address space

HMSYSMGR
CNODE

...

THREAD

VSROOT

CNODE

...

PMEM

VSROOT

CHANNEL

Main thread

PROCESSA
CNODE

...

THREAD

CHANNEL

Stack,heap,etc.

hmsysmgr
communications

PROCESSB
CNODE

...

PMEM

CHANNEL

Grant

Grant

Grant

Grant

GrantGrant

Secure Kernel
Capabilities Example

Managers
Overview

Managers

• The only S-EL0 processes allowed to ask the
secure kernel to perform critical operations

e.g. mapping physical secure memory

• Can be considered as extensions of the
micro-kernel in userland

TA TA TA TA TA

libc libgm libtee libvendor

Platdrv Perm
Serv RPMB SSA TUI

GTask

hmsysmgr hmfilemgr

Secure Kernel

IPC

IPC

SECUREWORLD

Managers
File & System Managers

File manager (hmfilemgr)

• Manages and exposes two virtual file
systems

RAMFS
• Embedded archive
• Contains tasks binaries

TAFS
• Temporary storage for trustlets

and libraries

System manager (hmsysmgr)

• Implements most of the
fundamental features of the OS

Process creation
Virtual memory management
Access control
etc.

Communicate with other processes
through IPCs

Permissions of the calling process are
checked in the command handlers

Tasks & Drivers
Global Task

Equivalent to the init process on Unix-based
systems

Handle normal world commands

• Mailbox/shared memory registration

• Loading of trusted applications

Decryption with a private key “derived” from
the provisioned key

Signature verification with a hardcoded
public key

• Session management

• Forwarding of commands to trusted applications

TA TA TA TA TA

libc libgm libtee libvendor

Platdrv Perm
Serv RPMB SSA TUI

GTask

hmsysmgr hmfilemgr

Secure Kernel

IPC

IPC

SECUREWORLD

Tasks & Drivers
Examples of Tasks & Drivers

#DRV_TIMER

• Manages secure timers

#GATEKEEPER

• Gatekeeper implementation

#KEYMASTER

• Keymaster implementation

#PERMISSION_SERVICE

• Permissions system for RPMB,
SSA and TUI

#PLATDRV

• Platform drivers

• Interrupts, crypto engine, secure
element, fingerprint sensor, etc.

TA TA TA TA TA

libc libgm libtee libvendor

Platdrv Perm
Serv RPMB SSA TUI

GTask

hmsysmgr hmfilemgr

Secure Kernel

IPC

IPC

SECUREWORLD

#RPMB

• RPMB filesystem

• Uses a normal world agent

#SSA

• Trusted Storage API

• Uses a normal world agent

#TALOADER & TARUNNER

• glue between GlobalPlatform
and OS-level APIs

#TUI

• Trusted User Interface
implementation

Tasks & Drivers
Security

Vulnerability research

• IPC command handlers

• Permissions system
There is a library for implementing
security access controls
Tasks have credentials and security
contexts, that can be mapped to
permissions
Most permissions are static, but can
also be added dynamically
Permissions are checked within the
IPC command handlers

Vulnerabilities identified

• TUI Task
Heap buffer overflows

• Platdrv Task
Arbitrary memory read/write
Non-secure physical memory read
Heap buffer overflows
Heap pointer leak

• Only specific tasks can reach the
vulnerable IPC command handlers

Trusted Applications

TA TA TA TA TA

libc libgm libtee libvendor

Platdrv Perm
Serv RPMB SSA TUI

GTask

hmsysmgr hmfilemgr

Secure Kernel

IPC

IPC

SECUREWORLD

Trusted Applications
Introduction

Secure world userland applications

Developed by Huawei and 3rd parties to
provide services to the Normal World

Use the standard GlobalPlatform APIs, as
well as some proprietary extensions

Generally loaded from the Normal World

• Stored in the Android system/vendor
partitions or embedded in APKs

• Signed and encrypted

Create

Destroy

Open
Session

Open
Session

Open
Session

Handler #1 ... Handler #n Handler #1 ... Handler #n Handler #1 ... Handler #n

Close
Session

Close
Session

Close
Session

Trusted Applications
Life Cycle

Create and Destroy

• Manage the global state

• Declare the allowed CAs list

Open and Close Sessions

• Manage the per-CA state
Command Invocation

• Handles a request coming from a CA
and sends back a response

Trusted Applications Properties

• Single instance, multi session, instance keep alive, etc.

Trusted Applications
Authentication

Trusted applications embed a list of authorized APKs/binaries

• APK: package name + signing public key

• Binaries: file path + user id + hash of code pages

Chain of trust

• The kernel is assumed to be uncompromised

• The kernel authenticates teecd

• teecd forwards information about the binaries

Trusted Applications
Design Choices & Mitigations

Design choices

• Secure functions (e.g. memcpy_s)

• Parameter buffers are copied to
prevent inter-world TOCTOU

• Robust and generic Parcel-based
system to handle data in a safe
manner

• Output buffer sizes can only be
reduced

• Etc.

Software Mitigations

• NX

• RelRO

• Stack cookies

• ASLR

Used to be bypassable with an
arbitrary read

The TA base address was written at a
fixed address by the loader

Only works for the ELF sections,
stack and heap are still randomized

Trusted Applications
Methodology

Reverse engineering: ~40 trustlets,
mainly AArch32 ELF but some AArch64

The attack surface mostly boils down
to the command handlers

Fuzzing: developed a custom fuzzer
based on Unicorn/AFL++

• Obstacles: stubbing the GP APIs,
ELF relocations, getting a backtrace

• Limitations: stateless, only low
hanging fruits can be found

Vulnerabilities

• Unchecked parameter types

• Stack & heap buffer overflows

• Information leaks

• OOB accesses

• Race conditions (multi session
binaries only)

• Etc.

Mostly in third party TAs

Trusted Applications
Vulnerabilities in HW_KEYMASTER

HWPSIRT-2021-63568

• cmd_unwrap can be used to write
arbitrary data to any files in the
sec_storage_data/PKI/ folder of the
secure file system

HWPSIRT-2021-80349

• generate_keyblob copies semi user-
controlled data into the output
parameter params[3]

• Should be a memref, but there is a
code path where it can be a value

typedef union {
 struct {
 void* buffer;
 size_t size;
 } memref;
 struct {
 uint32_t a;
 uint32_t b;
 } value;
} TEE_Param;

TEE_Result TA_InvokeCommandEntryPoint(
 void* sessionContext,
 uint32_t commandID,
 uint32_t paramTypes,
 TEE_Param params[4]
);

SFS

Trusted Applications
Exploitation of HW_KEYMASTER

Arbitrary read

• Write a “fake” keyblob to the SFS using a
previously imported all-zeroes AES key

SFS

0000...0000

Trusted Applications
Exploitation of HW_KEYMASTER

Arbitrary read

• Write a “fake” keyblob to the SFS using a
previously imported all-zeroes AES key

SFS

magic 0x534554

version 0x1

key_off 0x1C

key_len 0x42

... ...

FakeKeyblob

Trusted Applications
Exploitation of HW_KEYMASTER

Arbitrary read

• Write a “fake” keyblob to the SFS using a
previously imported all-zeroes AES key

• Call cmd_get on the “fake” keyblob to read
data from a user-controlled offset

if (keyblob->magic == 0x534554
 && keyblob->version <= 0x12C
 && keyblob->keyblob_size == keyblob_size) {
 memcpy_s(
 params[1].memref.buffer,
 params[1].memref.size,
 keyblob + keyblob->key_off,
 keyblob->key_len);
}

SFS

magic 0x534554

version 0x1

key_off 0x1C

key_len 0x42

... ...

FakeKeyblob

H
e
ap

KeyblobObj #1 Obj #2 Obj #3 Obj #4 Obj #5

Keyblob opened
and copied in the
heap

Trusted Applications
Exploitation of HW_KEYMASTER

Arbitrary read

• Write a “fake” keyblob to the SFS using a
previously imported all-zeroes AES key

• Call cmd_get on the “fake” keyblob to read
data from a user-controlled offset

if (keyblob->magic == 0x534554
 && keyblob->version <= 0x12C
 && keyblob->keyblob_size == keyblob_size) {
 memcpy_s(
 params[1].memref.buffer,
 params[1].memref.size,
 keyblob + keyblob->key_off,
 keyblob->key_len);
}

SFS

magic 0x534554

version 0x1

key_off 0x1C

key_len 0x42

... ...

FakeKeyblob

H
e
ap

KeyblobObj #1 Obj #2 Obj #3 Obj #4 Obj #5

key_off
key_len

Trusted Applications
Exploitation of HW_KEYMASTER

Arbitrary read

• Write a “fake” keyblob to the SFS using a
previously imported all-zeroes AES key

• Call cmd_get on the “fake” keyblob to read
data from a user-controlled offset

First read adjacent heap data to get a leak
of the object’s address
Then you can read at arbitrary addresses,
and break ASLR in particular

File operations

Read 0xdeadbeef

... ...

Open Write gadget

Arbitrary function

Open 0x12345678

Trusted Applications
Exploitation of HW_KEYMASTER

Arbitrary read

• Write a “fake” keyblob to the SFS using a
previously imported all-zeroes AES key

• Call cmd_get on the “fake” keyblob to read
data from a user-controlled offset

First read adjacent heap data to get a leak
of the object’s address
Then you can read at arbitrary addresses,
and break ASLR in particular

Arbitrary write
Use it to overwrite a function pointer (e.g.
file operations structure) to create a better
arbitrary write primitive
Can also use it to call arbitrary functions

Conclusion

Conclusion

All vulnerabilities were reported to Huawei Bug Bounty Program and fixed in updates released prior to this presentation

Well thought-out security architecture

• Defense-in-depth measures

• Privilege limitations and access control

• Robust implementations (secure coding practices)

• Mistakes can still happen, but are mitigated

Binary encryption is a double edged-sword

• Harder for an attacker to get access and find bugs

• But teams with the resources to break the encryption layer might be less likely to share their findings

Upcoming blogposts with the missing details

• https://blog.impalabs.com

https://blog.impalabs.com

Thank you!

